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Abstract  

The main goal of the HARVIS Project is to identify how cognitive computing algorithms, implemented 
in a digital assistant, could support the decision-making of single pilots in complex situations. The first 
step to reach this objective is to define what is the state of the art of Artificial Intelligence, and in which 
context it is expected to work into, having 2035 as a target reference.  

This document presents the results of the state-of-the-art analysis carried out on: 

• The future aviation scenario: what we expect the roles, the technologies, the procedures and 
the traffic will look like in 2035+. 

• Single pilot operations: what it is expected to change in the cockpit from the point of view of 
tasks allocations and available supporting technologies. 

• The Artificial Intelligence: which are the capabilities of Machine Learning (ML) and Cognitive 
Computing (CC) algorithms and what AI based technologies are (and will be) able to do, not 
only in aviation but also in other domains. 

• Human Factors: how the interaction between pilots and automation is expected to change, 
especially when dealing with highly automated systems. 

• Human-Machine Interface: which interfaces could facilitate a safe and proficient interaction 
with those systems, reaching a perfect balance between humans and automation. 

The document also describes the architecture behind the Virtual Pilot Assistant concept. 

These are the basic information the project will use: 

1. to develop the concept of an AI based virtual assistant able to enable and support Single Pilot 
Operations (that will be presented in D2.1 Analysis of Potential Cognitive Computing Aided 
Tasks) and  

2. as a starting point in the definition of a roadmap highlighting the steps needed, in terms of 
technology development, interaction design and training, to develop such an assistant (that 
will be presented in D2.2 Human Machine Interface and Envelope, D2.3 Pilot training 
considerations for the implementation of a digital assistant and D4.3 Technologies roadmap). 
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1. Executive summary 

This document corresponds to the D1.1 deliverable “State of the art of cognitive computing 
algorithms” within the first work package of the HARVIS project. The purpose of this document is 
to stablish a baseline in order to develop the roadmap in how Cognitive Computing (CC) Algorithms 
could support the decision making of single pilot in complex situation, which is the main goal of 
this project.  

Therefore, an assessment of the future aerospace sector has been carried out, considering future 
systems and tasks as well as human factor. Additionally, a state-of-the-art review in machine 
learning and cognitive computing algorithms and their integration into several sectors such as 
aerospace, automotive, healthcare, etc. has been made. Furthermore, a research of the different 
proposal for the implementation of the Single Pilot Operation (SPO) scenario has been done, 
analysing the different approaches and current regulations. 

 

http://www.harvis-project.eu/


EDITION 00.03.01 

 

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) 
under grant agreement No 831884. The JU receives support from the European 
Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 
JU members other than the Union 
 

10 
 

 

2. Introduction  

2.1. Purpose and Scope of the document 

This document aims at reporting the results of the state-of-the-art analysis carried out to develop a 
roadmap focusing on the creation of a virtual intelligent system able to help humans in a cockpit 
environment. Future aviation scenarios, single pilot operations, the use of artificial intelligence to 
develop a digital assistant, the human factors and the human-machine interface are some of the topics 
deeply analysed throughout this document. 

2.2. Deliverable Structure 

This document is structured as follows: 

• Section 1 details the executive summary of the document. 

• Section 2 summarizes the purpose and scope of this document as well as the structure it 
follows, and the acronyms and terminology used. 

• Section 3 analyses the future aviation scenarios focusing on further systems, technologies, 
procedures, traffic, roles and human factors. 

• Section 4 describes the necessary changes in the cockpit, from the point of view of tasks 
allocations and available supporting technologies, to allow single pilot operations. 

• Section 5 presents an in-depth state-of-the-art analysis in the capabilities of Machine Learning 
and Cognitive Computing in a wide range of domains including aviation. 

• Section 6 aims to evaluate which interfaces could facilitate a safe and proficient interaction 
human-machine. 

2.3. Acronyms and Terminology 

The following table reports the acronyms used in this deliverable. 

Term Definition 

AI Artificial Intelligence 

ADS-B Automatic Dependent Surveillance Broadcast 

AMAN Arrival MANager 

AOCO Airline Operational Centre Operator 
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Term Definition 

AMAN Arrival Manager  

ASAS Airborne Separation Assistance Systems 

ASSAP Airborne Surveillance and Separation Assurance Processing 

ATC Air Traffic Control 

ATCO Air Traffic Control Officer 

ATM Air Traffic Management 

BoW Bag of Words 

BRLOS Beyond Radio Line Of Sight 

C2 link Command and Control link 

CAS Complex adaptive socio-technical systems 

CC Cognitive Computing 

CFMU Central Flow Management Unit 

CHMI Cognitive Human Machine Interface 

CIoV Cognitive Internet of Vehicles 

CNN Convolutional Neural Network 

CNS Communications, Navigation and Surveillance  

COGPIT COGnitive cockPIT 

COGMON COGnition MONitor 

CRM Crew Resource Management 

CSPO Closely Spaced Parallel Operations 

DERA Defence Evaluation and Research Agency 

DMAN Departure MANager 

DPM Deformable Part Model 
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Term Definition 

DRML Deep Region Multilabel Learning 

EEG Electro EncephaloGraphy 

ETSO European Technical Standard Orders 

FAA Federal Aviation Administration 

FAR Federal Aviation Regulations 

FCS Flight Control System 

FCU Flight Control Unit 

FE Feature Extraction 

FER Face Emotion Recognition 

FMS Flight Management System 

FNIR Functional Near InfraRed 

GA SPO General Aviation Single Pilot Operation 

GA Ground Associates 

GAN Generative Adversarial Network 

GO Ground Operator 

GPS Global Positioning System 

GPs Ground Pilots 

GPWS Ground Proximity Warning System 

HF Human Factors 

HMI Human Machine Interface 

HMS Human Machine System 

HMT Human Machine Teaming 

HOG Histogram of Oriented Gradients 
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Term Definition 

HP Human Performance 

HPE Human Performance Envelope 

HR Heart Rate 

HRV Heart Rate Variability 

IAS Intelligent Adaptive System 

ICAO International Civil Aviation Organization 

ITP In Trail Procedure 

IVHM Integrated Vehicle Health Management  

LBP Local Binary Patterns 

LOAT Level Of Automation Taxonomy 

LSA Latent Semantic Analysis 

LSTM Long-short Term Memory 

MCDU Multifunctional Control and Display Unit 

MCP Mode Control Panel 

ME Maximum Entropy 

ML Machine Learning 

MTCD Medium Term Conflict Detection 

MTL Multilabel Learning 

NB Naïve Bayes 

ND Navigation Display 

NG-FMS NextGeneration Flight Management System 

NLP Natural Language Processing 

NMOC Network Manager Operations Centre 
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Term Definition 

NMT Neural Machine Translation 

PACT Pilot Authorization and Control of Tasks 

PF Pilot Flying 

PFD Primary Flight Display 

PNF Pilot Not Flying 

RA Resolution Advisory 

RCO Reduce Crew Operations 

RCP Required Communications Performance  

RL Reinforcement Learning 

RLOS Radio Line Of Sight 

RNN Recurrent Neural Network 

RPAS remotely piloted aircraft systems  

SA Sentiment Analysis 

SA Situation Awareness 

SA&CA Separation Assurance and Collision Avoidance  

SASS Situation ASSessor  

SIFT Scale-invariant Feature Transform 

SPO Single Pilot Operations 

SRGAN Super-resolution Generative Adversarial Network 

STCA Short Term Conflict Alert 

SURF Speeded Up Robust Features 

SVD Single Value Decomposition 

SVM Support Vector Machines 
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Term Definition 

TA Traffic Alert 

TCAS Traffic Collision Avoidance System 

TCT Tactical Controller Tool  

TIM Tasking Interface Manager 

TRL Technology Readiness Level 

UAS Unmanned Aircraft System 

YOLO You Only Look Once 

Table 1: Acronyms 
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3. Future Aviation scenario 

 

3.1. Future Systems 

CleanSky pave the way of next generation cockpit systems and aircraft operations. The main areas of 
development concern large passenger aircraft, systems for green operations, airframe and systems. 
WP1 on avionics extended cockpit work(ed) on very large interactive head-down display, tactile 
interactive multifunction display and voice recognition integration in the cockpit. Other improvements 
were also carried out on new FMS functions like ‘fly by trajectory’, but also on an advanced modular 
surveillance system. 

Avionics industrials like Thales, Rockwell Collins, Honeywell and Garmin are already working on new 
cockpits with larger and tactile displays, voice recognition systems, augmented reality and increasingly 
complex automation (see Figure 1). 

 

Figure 1. Thalès next gen cockpit © Thalès 

Thalès next gen cockpit will include ASAS (Airborne Separation Assistance Systems), D-Taxi (Digital 
Taxi) via trajectory upload with datalink, 4D trajectories, Eco take-off on large multitouch displays. 

In the future, aircraft will be more connected and huge quantity of data will have to be processed in 
order to give clear information to pilots and automations systems. Recent accidents shown that 
confusion can occur between the pilots and the state of automation, there are a lot of work to be done 
in order to help the pilot to better understand and interact with automation and recent research work 
is focused on giving feedback of pilot status to HMS. 

The recent developments in artificial intelligence technologies could allow the machine to provide 
feedback and assistance based on the processing of various sources of information including models 



D1.1:  STATE OF THE ART REVIEW  

  
 

 

© – 2019 – Skylife Engineering, Ecole Nationale De L’aviation Civile, Universitat 
Politecnica De Valencia, Deep Blue. All rights reserved. Licensed to the CS2 Joint 
Undertaking under conditions 
www.harvis-project.eu 
 

17 
 

 

of human information processing, physiological measures of pilot state, natural language processing, 
speech recognition and vision. The purpose of such a system would be to support the pilot in the 
decision-making process by being able to adapt itself when goals and requirements evolve, interact 
easily with their human counterpart, identify and extract relevant elements on the situation including 
sensory inputs (vision, sound, gestures, physiological sensors). This new approach could help the pilot 
to maintain an optimal situation awareness (SA). The fields of neuroergonomics [1] and augmented 
cognition [2] rely on psychophysiological measurements in order to determine the user’s cognitive 
state that could be used in intelligent adaptive systems (IAS). 

3.2. Future pilots’ tasks 

As Next Generation Air Transportation System (NextGen) concepts change radically air traffic 
management, tasks, roles and responsibilities for the flight crew will evolve dramatically. Future flight 
deck will have available more complex and accurate information combined with new automation tools. 

With more perspective, the role of pilot can be defined as a pilot or as a manager [3]. If the pilot keeps 
its role as pilot, he will still have the ability to control the aircraft, delegating tasks to automation. If 
the pilot become a manager, automation is responsible for the majority of aircraft control and 
navigation tasks, as well as the information processing tasks. Regardless of the evolution of the pilot 
role, its tasks and responsibilities will change.  

Pilot of transoceanic flights will have new opportunities to reach more easily their optimal flight level. 
Over the ocean, without radar coverage, In-Trail Procedures (ITP) enable aircraft to change flight level 
to optimize fuel consumption. Where previously the separation was 80 to 100 nautical miles, ADS-B, 
GPS and other navigation sensors could divide it by up to 3 and the pilot could decide in this condition 
to avoid potentially-blocking aircraft. In addition to fuel savings, the benefit of ITP through ADS-B could 
be the improvement of pilots’ situational awareness. The different traffic view will help the pilot to 
have a better understanding of the surrounding airspace. 

Closely Spaced Parallel Operations (CSPO) with the use of more data (wake, weather, trajectory 
prediction) could enable paired approaches to minimum runway spacing in instrument meteorological 
conditions with the appropriate safety level [4]. This new technology is designed with consideration of 
the pilot capabilities. CSPO will transfer the responsibility for separation from the air traffic controller 
to the pilot in the flight deck.  

Flight Deck Interval Management (FIM) is expected to enable air traffic controllers and pilots to 
increase runway capacity by reducing the uncertainty of time of arrival within 5 to 10 seconds. To make 
this possible, the concept propose that a pilot could have access to a “leader” aircraft speed given by 
the air traffic controller. This information will be used to define the safety distance between both 
aircraft and will increase the runway capacity. The systems may have an impact on the role and tasks 
of pilots and air traffic controllers since the separation is delegated to the pilot.  

The number of clearances given by controllers will probably increase faster than the traffic itself. This 
will saturate VHF radio networks, and this is what motivates the use of Controller Pilot Data Link 
Communication (CPDLC). Reducing voice communication will potentially reduce pilot’s situation 
awareness about aircraft in their vicinity. Boehm-Davis, in [5], confirmed that not only the pilot SA 
decrease, but the workload could also increase. 
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4. Single-Pilot Operations 

4.1. Justification 

For the last 10 years, there has been growing research in a concept known as Single Pilot Operations 
(SPO), which is focused on reducing the commercial cockpit to a single pilot from the current crew of 
two pilots. Recent advances in Communications, Navigation, Surveillance/Air Traffic Management and 
Avionics (CNS+A) technologies have allowed higher levels of automation, creating an opportunity for 
commercial airliners to transit to SPO. NASA Ames and NASA Langley have spearheaded this effort in 
the United States [6], but DARPA is also interested in this problem [7]. Additionally, many researches 
within the European Community have been carried out in order to address this possibility [8].  

SPO may be regarded as the next phase of a decades-long downward trend in the minimum number 
of cockpit crew required for safe operations. In the 1950s, commercial aircraft typically had five cockpit 
crewmembers: captain, first officer (co-pilot), flight engineer, navigator, and radio operator. Advances 
in voice communication equipment removed the need for a dedicated radio operator position. Next, 
advances in navigation equipment (e.g., inertial navigation systems) removed the need for a dedicated 
navigator position. Finally, advances in engines, aircraft systems and improved tools for monitoring 
have removed the need for a dedicated flight engineer position.  

Over the past 25 years or so, commercial aircraft have operated with a two-person cockpit (captain 
and first officer). It is important to note that the functions associated with the radio operator, 
navigator, and flight engineer positions did not simply disappear, they are now performed by the 
captain and/or first officer, assisted by cockpit equipment that has greatly reduced the human 
workload originally required to perform those functions.  

Despite these advances, the transition from a two-pilot cockpit to a single-pilot cockpit will be 
significantly more challenging. A key requirement of SPO is to maintain safety at a level no lower than 
current two-pilot operations by the introduction of advanced cockpit automation and possibly new 
ground operator positions using support tools and air-ground communication links. The FAA’s stance 
is that there is no apparent safety benefit to be gained from single-pilot operations, largely driven by 
the risk of pilot incapacitation. Such occurrences are very rare but do occur and how to ensure safe 
operation in this case will be a significant hurdle in any SPO future approvals [9].  

While the safety issues for SPO are still to be fully addressed, the economic case for SPO is clear. There 
is a projected increasing pilot shortage through 2022, although the demand will likely be more in Asia 
and the Middle East [10]. The cost associated with crews (salaries, benefits, training, etc.) is a 
significant fraction of the aircraft operating cost, especially for operators that typically fly smaller 
aircraft with fewer seats than major airline operators that fly lager aircraft. That is why, crew cost and 
availability issues provide the motivation to explore the feasibility of safely operating long-haul and 
military operations with a reduced crew, and commercial aircraft with a single pilot in the cockpit 
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assisted by advanced onboard automation and ground operators providing flight support services well 
beyond those currently delivered by aircraft dispatchers.  

To address these issues, projects such as the Advanced Cockpit for Reduction of Stress and Workload 
(ACROSS) [11], Aircrew Labour In-Cockpit Automation System (ALIAS) [7] and the studies on SPO 
feasibility conducted by NASA under its Airspace System Program [9], have brought together academic, 
industrial and government organizations to develop solutions for workload reduction in the cockpit. 
These projects have prompted in the development of several concept of operations that covers the 
roles and responsibilities of the principal human operators, as well as many architectures for the 
automation tools used by humans and the operating procedures for human-human and human-
automation interactions. The key points of these proposals are that they have been constructed using 
insights gained from a variety of sources including subject matter experts, human-in-the-loop 
experiments examining the performance these concepts of operations and cost-benefit analyses.  

With the Captain as the only physical human presence in the cockpit, several theories for future SPO 
operations posit that many co-pilot functions will need to migrate to a ground control station. Indeed, 
research is underway investigating ground control strategies for remote assistance [6], [12]. Another 
theory is that significant improvements need to be made in automating the co-pilot’s functions on 
board the aircraft, instead of shifting them externally. A derivative proposed architecture has one pilot 
in the highly automated cockpit, with onboard personnel serving as a back-up pilot, such as commuting 
pilots, flight attendants, and flight marshals [9]. 

Regardless of what such a resultant SPO architecture would look like, it is widely accepted that 
automation will have to substantially increase in the air and on the ground for such a SPO concept to 
be successful [6], [9]. To this end, substantial co-pilot functions, and even possibly functions currently 
assigned to the Captain, will be automated in the future. In the following subsections, a summary of 
the most remarkable proposals found in the reviewed literature is presented, which mostly coincide 
that the solution should incorporate knowledge-based capabilities as well as cognitive and adaptive 
interfaces to mitigate pilot’s workload and improve situational awareness. These are relatively new 
concepts in civil aviation but are essential for the introduction of SPO. 

4.2. Requirements and considerations for SPO  

4.2.1. Systems requirements 

Many researches have been conducted to assess the performance and safety changes to reduce crew 
and SPO in a present-say flight deck design. [13] highlights that Reduced Crew Operations (RCO) and 
SPO, using the current technologies and organization, significantly decrements flight performance, due 
to checklist are often sacrificed, more errors are committed, worse flight path performance, etc.; which 
leads to unacceptable safety margin. [14] underline that nonverbal communications are an important 
aspect of crew coordination and must be maintained or replaced to promote good awareness and 
Crew Resource Management (CRM) in SPO scenario. Furthermore, in [15] an interview with several 
pilots is conducted and they all agree that “Going from two to one pilots is actually a subject we discuss 
frequently in the cockpit, and the nearly universal opinion (at this time) is that we can see a cockpit 
with only one pilot (although certainly not with current systems in use)...”. At the end of this paper it is 
proposed a list of 12 functions that an onboard intelligent system should be able to replicate for a 
single human pilot to be able to manage the workload in piloting an aircraft in transport missions. 
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As regards to airworthiness directive, AMC 25.1523 requires that the aircraft flight deck design must 
be compatible with the workload allocated to the minimum Flight crew. To be noticed that in FAR 23 
amdt 64 and CS 23 amdt 5, the notion of minimum flight crew does no longer appear, its definition is 
left to the applicant decision and ability to show compliance. In this sense, for SPO scenario become a 
reality, it will be necessary to work on these two aspects, for example by: decreasing pilot workload 
and flight deck complexity, increasing aircraft surveillance capacity, and facilitating collaborative work 
and information sharing between the aircraft, air traffic control, and ground crews; are some 
considerations extracted from [16]. 

− “Decrease pilot workload by taking control of certain flight tasks, including: improving 
communication and navigation tasks using Next Generation Flight Management System (NG-
FMS); system monitoring through Integrated Vehicle Health Management (IVHM) and Avionics 
Based Integrity Augmentation (ABIA) systems, with the capability to issue cautions and 
warnings to the pilot when required and the ability to temporarily assume control authority in 
the event of pilot incapacitation.” [16]. 

− “Decrease flight deck complexity with the integration of more automated tasks organised in 
different levels. This can be achieved by the use of adaptive interfaces which suggest 
appropriate automation modes based on task complexity and pilot workload; or using aural, 
visual and haptic alerts triggered by priority to avoid pilot confusion.” [16]. 

− “Increase aircraft surveillance capacity through advanced avionics systems including: a 
surveillance system which ensures autonomous separation assurance and collision avoidance 
(SA&CA) in non-controlled and controlled airspace [14]; a weather surveillance system, 
augmented by ground forecasts from an air-ground data link and autonomous 
strategic/tactical re-rerouting and conflict resolution.” [16]. 

− “Facilitate collaborative work and information-sharing with the ground station through: a 
combination of direct Radio-Line-of-Sight (RLOS) and beyond Radio-Line-of-Sight (BRLOS) air-
to-ground communication channels between ground crew and ATCo, supplemented by 
ground-to-ground channels for redundancy and load balancing; secure, reliable data links with 
variable bandwidth and latency performances depending on available timeframe and task 
requirements; transferral of control authority to GO in the event of pilot incapacitation.” [16]. 

− Adaptive systems: several studies  [17],[18]  argue that while higher levels of automation are 
required to support future operations, the nature of automation needs to be user-centric and 
adaptive to the needs of the human user. Thus, these systems should be able to assess the 
context and needs of the user based on passive or implicit inputs, dynamically reconfiguring 
itself to provide the required support. 

The reviewed literature highlights that SPO will move to one pilot monitoring the systems controlled 
by an AI algorithm and coordinating some tasks with the ground operators. Currently, both pilots 
require constant communication between them. However, within this context, most of the 
interactions on the flight deck are between a human and a written software. This does not wholly 
cancel the need for Crew Resource Management (CRM) since, in addition to the coordination between 
the pilot and air traffic control, ground crews, and potentially other aircraft; there must still be an 
interaction between the pilot and AI controlling the flight. This comes in the form of human machine 
teaming (HMT).  
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The HMT must be designed in such a way to achieve results comparable to those observed in a 
successful CRM. This means that some human factors and key ergonomic elements should be 
considered for system design, such as: facility of learning and remembering key functions, efficiency 
and intuitiveness of using automated functions, and avoidance/reduction of pilot-induced errors. Thus, 
the AI system would need to learn, communicate, and correct deviations like a second crewmember 
would do. 

4.2.2. Main challenges 

Once the main requirements that must be considered for the SPO scenario have been identified, some 
considerations of the challenges that must be addressed in order to implement this concept of 
operation are shown below (extracted from [13]): 

A. Operational concepts 

“Distribution of workload between pilot-in-cockpit and ground crew, single-pilot resource 
management, communication procedures and processes, as well as pilot/crew training 
requirements are important issues. Two conceptually different, but complementary 
operational concepts are considered herein, in addition to the current-day two-crew 
complement: 

a) Reduced Crew Operations (RCO): 

In RCO, two human pilots are on-board the aircraft. However, during the cruise phase of flight, 
only one pilot is actively engaged in flying the aircraft. The resting pilot may, in fact, leave the 
cockpit or may be seated in their cockpit seat.  

b) Single Pilot Operations (SPO): 

The only pilot on-board the aircraft serves as the captain and pilot-in-command (PIC), making 
all decisions and performing actions pertaining to command of the flight. In the event that 
assistance is needed, a ground operator may be linked to the cockpit via digital datalink, video, 
and/or radio.” [13].  

B. Remote pilot assistance 

“It is assumed that part-time or scheduled, periodic support from a ground operator is a 
necessary condition for SPO. Thus, a ground operator can handle multiple flights, and if 
dedicated support is necessary, dedicated assistants can be provided. This concept raises the 
issues caused by the lack of initial situational awareness (SA) of a ground operator, when 
specialized assistance is requested. The conclusions of [19] highlight that, with appropriate 
displays, ground operators were able to provide immediate assistance, even if they had 
minimal SA prior to getting a request during in-route scenarios. The design of the ground 
station, the information, and the security and content of the datalink as well as the expertise 
of the ground operator are critical issues. NASA has been conducting research into remote 
pilot assistance, developing various operational paradigms (e.g., “Harbor pilot” or “Super 
Dispatcher”) and most importantly, exploring whether a remote pilot can effectively complete 
the tasking and reduce the workload to safely enable SPO.” [13].  

C. Pilot Incapacitation 

http://www.harvis-project.eu/


EDITION 00.03.01 

 

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) 
under grant agreement No 831884. The JU receives support from the European 
Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 
JU members other than the Union 
 

22 
 

 

In-flight medical incapacitation is defined as a condition in which a flight crewmember was 
unable to perform any flight duties and impairment as a condition in which a crewmember 
could perform limited flight duties, even though performance may have been degraded [20].  

Thus, the measurement of the pilot’s psycho-physiological state and identification of adverse 
human physical and cognitive impairment will be crucial technology for RCO/SPO. The 
development of psycho-physiological measures, fatigue and state identification technologies 
are on-going [21]  to meet the challenges of: 

a) Developing sensor suites with appropriate data fusion methods since the results to date 
suggest that multiple sensor modalities are needed for most classifications. 

b) Creating measurement and identification technologies that are robust and reliable enough 
to match the appropriate performance standards of nowadays onboard avionics systems (i.e., 
FAA Advisory Circular AC 25-1309). 

c) Meeting these technology goals while simultaneously not over-encumbering the pilot, 
interfering with their operations on the flight deck, or violating privacy concerns. 

D. Increasingly autonomous systems (IAS) 

“New automation or more aptly, IAS, must perform or assist in the performance of functions 
that the second pilot in RCO/SPO flight would normally do. This does not necessarily mean 
relegating the RCO or SPO pilot to the pilot-monitoring role; the roles and functions for IAS 
must be tailored to the operation and the needs of the human. IAS are envisioned as intelligent 
machines (hardware and software systems) seamlessly integrated with humans, whereby task 
performance of the combined system is significantly greater than the individual components.  

IAS utilize machine learning concepts and cognitive computing algorithms to perform functions 
without explicitly being programmed. These systems have the ability to modify and adapt their 
behaviour in response to their external environment and conditions. Nevertheless, these IAS 
are also designed using human-autonomy and automation interaction teaming principals. IAS, 
if properly designed, can replicate and in fact should enhance safety and reliability [22]  (e.g., 
provide the ability to adapt to changing patterns and preferences; remain vigilant at all times; 
tailor automation actions to specific circumstances/add flexibility; increase situation 
awareness by context-sensitive information; monitor human actions and alert or intervene to 
prevent errors; improve automation ability to react quickly to avoid critical situations).” [13]. 

E. Technical and Communications 

Since SPO will increase air-ground communications and impact in the actual CRM  paradigm 
for both normal and abnormal conditions, it will be necessary to face these technical 
challenges by developing: High bandwidth and low latency communications (line-of-sight and 
beyond-line-of-sight data links for air-to-air, air-to-ground as well as ground-to-ground 
systems), autonomous navigation systems (flight planning, management, negotiation and 
validation), autonomous surveillance systems (sense-and-avoid, health monitoring), as well as, 
adaptive automation and interfaces for pilot and ground crew. 

F. Safety 
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Increase system integrity and performance, as well as assess the impact of higher levels of 
automation on flight safety and specify incapacitation procedures. Developing an Integrated 
Vehicle Health Management (IVHM) subsystem to monitor aircraft systems, providing 
appropriate updates, warnings or alerts; or increasing aircraft surveillance capacity to ensure 
autonomous separation assurance and collision avoidance, would be some goals to follow. 

By creating these associated technologies and ensuring the proper human-autonomy teaming, 
the unique abilities of intelligent machines and humans are leveraged to create levels of safety 
and performance above and beyond that each one could provide individually. Such a systems 
may be especially suited during off-nominal events or in conditions where less experienced or 
non-expert operators are involved. 

G. Human factor 

Develop automation tools in order to achieve HMT, by assessing pilot workload, maintaining 
ground operator and pilot’s situational awareness, addressing single-pilot incapacitation, 
developing new CRM procedures for interactions between the pilot and ground operator, 
building automation trust, as well as designing appropriate human-machine interfaces and 
interactions. 

4.3. Tasks allocation for SPO 

This section presents a concept of operation for the SPO scenario, as well as some suggestions for 
function and task allocation among the aircraft crew and ground operators, which summaries all the 
approaches analysed in the literature.  

Implementation of SPO involves a transition from the current paradigm of a Captain, First Officer, and 
Dispatcher team using conventional automation tools, to a new paradigm of a Captain and Ground 
Operator team interacting with advanced human-centred automation tools, which results in changes 
in the operational mode as well as in the responsibilities of relevant personnel. 

This new paradigm requires an evolution of the system in aircraft management centres, giving rise to 
an evolution of the current Airline Operational Centre Operator (AOCO) role, as well as, the 
reallocation or introduction of new tasks and jobs such as the Ground Operator (GO) role, which is 
analogous to that of a Remotely Piloted Aircraft System (RPAS) ground operator.  

In [19] is proposed a scenario in which the AOCO assists the pilot with strategic tasks such as dispatch, 
optimal route planning and coordination with ATCo while the GO assists the pilot with tactical or 
emergency tasks such as re-routing and conflict resolution. In case of PF incapacitation, the GO will 
perform duties similar to those of a RPAS operator executing an emergency mission egress (i.e., landing 
in minimum time) and the associated landing procedure in co-ordination with the ATCo. Figure 2 
compares the tasks carried out by the pilots and ground operators under normal conditions with two 
pilots, as well as in SPO and in the case of RPAS. 
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Figure 2. Piloting task analysis [16]. 

A first analysis of the concept of operations for SPO is introduced by [23], where it is exposed that the 
roles/responsibilities, tools, procedures, etc. will depend in part on the nature of the operating 
condition. This article proposes a taxonomy, Figure 3, based on the pilot’s physiological and 
behavioural condition (normal vs. incapacitated) and flight condition (nominal vs. off-nominal). It is 
noted that the term “flight condition” refers to the myriad factors affecting the flight other than the 
pilot’s condition, such as the status of aircraft systems, weather conditions, and airport availability. 

 

Figure 3. A taxonomy of operating conditions for SPO [23]. 

As the taxonomy condition (TC) progresses from 1 to 4, the operating conditions become more 
challenging, and the requirements for safe implementation of SPO become more complex. For 
example, in TC–1, there may not be much need for ground operator assistance; the cockpit automation 
could provide most of the assistance needed by the captain. In TC–4 the ground operator, acting as 
captain, may need assistance from other ground operators to land the aircraft. This issue will be a key 
driver in order to lay out the safety, reliability and redundancy technologically requirements for cockpit 
automation, remote flight-control tools for the ground operator, and air/ground data links. 
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In the following subsections, the concept of operation system architecture for SPO scenario will be 
discussed in depth. It has been differentiated in two large blocks. The first block (4.3.1) focuses on the 
tasks performed by humans and the second one (4.3.2) address the advanced human-centred 
automation tools mentioned before and introduce the concept of Virtual Pilot Assistant (VPA), which 
is discussed on section 8. 

4.3.1. Human Operations 

This subsection summarizes some considerations for function allocation among the human operators 
on the aircraft and ground, discussed in [23]. In the following lines, characteristics of functions 
performed by the captain and ground operators are described; this includes options for organization 
structures for ground operators. The material presented in this section is not intended to be an all-
encompassing treatment of RSO/SPO options for function allocation among human operators; its 
scope is limited to the options being considered by NASA in its ongoing development of a concept of 
operations for SPO. 

4.3.1.1. Captain 

“The captain is the final decision-maker regarding the flight mission, and (according to procedures) 
calls on automation and ground operator assets to accomplish this mission. Thus, unless incapacitated, 
she/he serves as the pilot-in-command (PIC), making all decisions pertaining to command of the flight.  
The captain’s main tasks are to manage risk and resources (both human and automation).  

Under SPO scenario, the fundamental command/leadership role of the captain will not change, but 
the individual tasks and duties of the Captain will change significantly. The captain will likely take on 
some of the conventional Pilot Flying (PF) and Pilot Not Flying (PNF) duties, while other PF and PNF 
duties are allocated to the automation or the ground operators. The characteristics of the resources 
available to the captain will also be quite different, e.g., no first officer in cockpit, expanded menu of 
resources available from ground operators, new/advanced automation available in the cockpit. With 
this change in function allocation, a new CRM model will likely be required under SPO.” [23]  

4.3.1.2. Ground Operators 

“In current operations, flights receive ground support services from their Airline Operations Centre 
(AOC). Figure 4 depicts key positions in a typical AOC, which is supervised by an operation manager. 
There are various AOC teams that provide specialized services, e.g., dispatch, ATC coordination, crew 
scheduling, maintenance operations, customer service, and weather operations. It is anticipated that 
SPO would primarily affect the functions of the dispatch operations, with limited impact on other AOC 
services.  
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In current operations, each dispatcher serves around 20 aircraft that are in various phases of flight at 
different locations around the country or even the world. A significant part of the dispatcher’s duties 
lies in the pre-flight phase, where the dispatcher consults with the captain and uses various AOC tools 
to develop a flight plan (e.g., routing, cruise altitude, airspeed), determine fuel loading, meet weight 
and balance requirements, and ensure compliance with the minimum equipment list (MEL). After the 
dispatcher and captain sign the flight release, the dispatch functions transition to flight monitoring and 
serving as a conduit for information between the aircraft and other AOC operations. The dispatcher 
also plays an active role supporting the cockpit crew during off-nominal conditions such as aircraft 
equipment malfunctions, diversions to a different destination airport, and large (> 100 nmi) changes 
in routing. Dispatchers generally serve their flights all the way from pre-flight planning to gate arrival. 

In SPO, certified dispatchers become ground operators (see Figure 4) who collectively perform 
conventional dispatch functions as well as piloting support functions, although each ground operator 
may not necessarily perform both functions. Ground operator teams will collectively perform the 
following three core functions: (1) Conventional Dispatch of multiple aircraft; (2) Distributed Piloting 
support of multiple nominal aircraft; (3) Dedicated Piloting support of a single off-nominal aircraft.  

The Conventional Dispatch function has been described above. 

The Distributed Piloting function corresponds to basic/routine piloting support tasks such as reading 
a checklist, conducting cross-checks, diagnosing an aircraft system caution light, etc. It is presumed 
that a single ground operator can provide such services to multiple aircraft because these non-urgent 
and relatively brief tasks can be prioritized and executed sequentially, and that little or no specialized 
training would be required if the distributed piloting function was performed by a dispatcher who has 
been certified for the aircraft type. This function would be applicable only to nominal aircraft, 
corresponding to Taxonomy Condition 1 defined in Figure 3.  

The Dedicated Piloting function corresponds to sustained one-on-one piloting support requested by 
the captain under high-workload or challenging off-nominal operating conditions such as an engine 
fire, cabin depressurization, or diversion to an alternate airport due to low fuel and/or bad weather, 
etc. This function is also applicable to situations where the ground operator has to take command of 
an aircraft whose captain has become incapacitated. The tasks associated with this function may 
include flying the aircraft, e.g., remote manipulation of the aircraft’s flight management system (FMS) 

Figure 4. Representative layout of AOC [23]. 
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for route amendments, or remote manipulation of the aircraft’s Mode Control Panel (MCP) for sending 
speed/altitude/heading commands to the autopilot. The Dedicated Piloting function would be 
applicable to Taxonomy Conditions 2, 3, and 4 defined in Figure 3. The skills and training required to 
perform the dedicated piloting support function are essentially the same as those of a conventional 
pilot. One possibility is a rotating schedule where a pilot is scheduled for several weeks of airborne 
(cockpit) assignments followed by a week of ground (AOC) assignments. However, depending on the 
ground operator unit structure employed (see Figure 5), the pilot may need additional training in 
dispatch operations.” [23]. 

Although safe operation is the primary concern, another point to consider in order to develop a 
structure for organised ground operations, are the operating costs. Some of these cost factors are: 
number of ground operators relative to the number of aircraft they can safely support, 
training/qualification requirements for those ground operators, the number of ground stations that 
require complex and reliable (and hence expensive) equipment such as that required to remotely 
control an aircraft’s flight-path. Within this context [23] propose two ground operator organization 
structures of interest, hybrid ground operator unit (where all operators can perform any task) and 
specialist ground operator unit (where each operator performs a specific task), which are described 
below and illustrated in Figure 5. These ground operator organization structures have been selected 
by NASA, based on subject matter expert opinion, for evaluation in an upcoming human-in-the-loop 
evaluation. 

 

Figure 5. Examples of ground operator unit structures [23]. 

 

4.3.1.2.1. Hybrid Ground Operator Unit 

“In this organizational unit, each hybrid ground operator (HGO) is trained and certified to perform all 
three core functions: Conventional Dispatch tasks, as well as Distributed Piloting and Dedicated Piloting 
support tasks. Each HGO generally serves multiple flights from pre-flight planning to gate arrival. 
However, if/when one of these flights encounters an off-nominal condition that requires dedicated 
support, the other aircraft are handed off to several other HGOs under the direction of the unit’s 
supervisor. These handoffs will require some briefing given that most dispatch operators monitor and 
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aircraft from preplanning to gate arrival. A more extensive briefing will be required if the involved 
aircraft needs special handling instructions. The HGO then provides one-on-one support to the off-
nominal aircraft, calling upon other AOC positions (e.g., maintenance advisors) as necessary. After the 
off-nominal situation is satisfactorily resolved, the aircraft previously handed off by this HGO are 
returned to him/her if they have not already landed.” [23] 

4.3.1.2.2. Specialist Ground Operator Unit 

“In this organizational unit, there are two types of members. Ground Associates (GAs) are trained and 
certified to perform tasks associated with Conventional Dispatch and Distributed Piloting support for 
nominal aircraft. Ground Pilots (GPs) are trained and certified to perform tasks associated with 
Dedicated Piloting support for off-nominal aircraft. There would be many more GAs than GPs in these 
units.  

Each GA generally serves multiple flights from pre-flight planning to gate arrival. However, if/when one 
of these flights encounters an off-nominal condition that requires dedicated support that aircraft is 
handed off to a GP identified by a supervisor. Prior to the handoff, the GP may be on standby or 
performing collateral duties and would need a handoff briefing from the GA who was serving the off-
nominal aircraft. The GP provides one-on-one support to the off-nominal aircraft. The GA maintains 
general situational awareness of the off-nominal flight in case the GP requires dispatch support or any 
other AOC support. After the off-nominal situation is satisfactorily resolved, the GP returns the aircraft 
(if it has not already landed) back to the GA.” [23] 

4.3.1.2.3. Harbour Pilot 

“A harbour pilot is a type of ground operator serving as a member of a hybrid unit or a specialist unit 
(or any other type of ground operator unit). The function of a harbour pilot is similar to current practice 
in maritime operations. For example, there could be a harbour pilot with comprehensive knowledge 
of the Metroplex airspace in a concrete zone. Each harbour pilot provides distributed piloting support 
to individual nominal aircraft as they climb and descend through a complex terminal area airspace. 
This could reduce the workload of other positions in the ground operator units, enabling each position 
to support more aircraft.” [23] 

 

4.3.2. Human-Automation function allocation 

This section presents some considerations for allocating functions between human operators and 
automation in SPO scenario. As mention before, in SPO the captain (in the cockpit) and ground 
operators (in an operations support centre), working as a team, will interact with advanced automation 
tools (located on the cockpit and in a ground station) to maintain flight safety and efficiency. Some of 
the simplest functions currently performed by a human pilot in a two-person cockpit, such as reading 
checklists and conducting cross-checks, are good candidates for automation, although such systems 
will have to possess some of the same characteristics as the operator they are replacing. Highly 
complex functions, such as formulating options to address challenging off-nominal flight conditions, 
are likely best suited to human cognition given the current state of automation sophistication and 
reliability. Other functions could be performed by humans assisted by various levels of automation. 
Higher levels of automation will generally require fewer human ground operators to service a given 
fleet of aircraft. It is likely that there will be a progression, along the SPO implementation timeline, 
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from a larger ground operator complement using lower levels of automation to a smaller ground 
operator complement using higher levels of automation.  

Many previous researches (ACROSS) [11] and (ALIAS) [7], suggest that this new human centred 
advanced automation tools should incorporate knowledge-based capabilities as well as cognitive and 
adaptive interfaces to mitigate pilot’s workload. These are relatively new concepts in civil aviation but 
are essential for the introduction of SPO. Considering both, the SPO concept of operations and the 
evolving regulatory framework for conventional, general aviation and unmanned operations, the 
system architecture for a certifiable Virtual Pilot Assistant (VPA) is proposed in several studies, as a key 
to enable the implementation of SPO for commercial airliners. The VPA is a knowledge-based system, 
which reduces single-pilot workload in the cockpit through increased system autonomy and closer 
collaboration with the ground component.  

In the following subsection it is summarized the approach carried out by [16], which discusses the 
integration of Communications, Navigation and Surveillance (CNS) systems with the VPA and 
introduces the concept of a novel cognitive Human Machine Interface (CHMI) [24], which provides a 
real-time estimation of the pilot’s cognitive states for adaptive alerting and task allocation. 

4.4. Certification and Normative 

There are no operational regulations allowing SPO for commercial aviation at this point. However, 
there is ample literature covering conventional two-pilot operations, GA SPO as well as remotely 
piloted aircraft systems (RPAS), which can be assumed as the basis for the development of commercial 
SPO certification standards.  

In terms of airworthiness certification standards, current European and Federal Aviation Regulations 
(CS/FAR) Parts 25, in particular CS/FAR 25.1523 and Appendix D do not explicitly exclude SPO. 
According to them, the criteria for deciding minimum flight crew are based on pilot workload and flight 
safety when a pilot is incapacitated; to achieve certification, SPO needs to show that pilot workload 
remains at an acceptable level during normal/emergency operations, and that pilot incapacitation 
does not compromise flight safety.  

Unlike airworthiness, the operational requirements for commercial air transport described in the EU 
Air OPS (EU) 965/2012 Part ORO-FC-200 as well as in FAR 121.385(c), require a minimum of two pilots 
for commercial operations. Whereas ICAO standards for air operators i.e. Annex 6 – 9.1 on 
Composition of the Flight and 9.4.5 on Single pilot Operations under the IFR or at Night do not explicitly 
require Two pilots for Commercial Air Transportation and do not limit the single pilot operations under 
IFR to turboprops with less than 9 passenger seats . 

The following section provides a review of current certifications extracted from [16]. Within this 
review, Acceptable Means of Compliance (AMC), Guidance Materials (GM) and recommended 
practices applicable to SPO are presented. The material is sourced from national/international 
organizations such as the International Civil Aviation Organization (ICAO), Federal Aviation Authority 
(FAA), European Aviation Safety Agency (EASA), Civil Aviation Authorities (CAA) from Australia, the UK 
and New Zealand, the US Department of Defence (DOD) and the Institute for Defense Analyses (IDA). 
References are also made to standards from Aeronautical Radio Incorporated (ARINC), American 
Society of the International Association for Testing and Materials (ASTM), Radio Technical Commission 
for Aeronautics (RTCA), Society of Automotive Engineers (SAE), and NATO Standardization Agreements 
(STANAGs).  
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“For SPO, the main guidelines for crew responsibility and authority are described in CS/FAR 23.1523 
(before amdt 5 & amdt 64 respectively), EU Air OPS Annex VIII Part-SPO (Special Operations), Subpart 
A (SPO.GEN.105/106/107). EASA's AMC/GM to Annex III provides additional guidelines for SPO 
personnel (SPO.100), high-risk commercial operations (SPO.110) and CRM training (FC.115). ICAO 
Annex 1, Section 2.1.3 provides recommendations for class and type ratings for single-pilot aircraft. EU 
Air OPS Part ORO.FC.202 provides requirements for Single-pilot operations under IFR or at night. 

Section 9-11 to 9-17 of FAA-H-8083-9A gives an overview of Single-pilot Resource Management (SRM); 
FAA AC 91-73B provides guidelines for taxi procedures for Part 91 and 135 SPO; CASA EX43/11 provides 
an exemption for SPO in Cessna 550/560 aircraft along with accompanying requirements and 
conditions; CAA AC 91-11 is an advisory circular for SPO under IFR rules containing the relevant 
checklists, CRM guidelines, and outline of a typical SPO flight; CAA Standards Document 14 provides 
guidance for the required skill tests and proficiency checks in the certification and licensing of SPO 
aircraft. 

• Technical Aspects: 

Technical considerations capture the requirements and recommendations for the design and 
development of CNS systems. There are no specific technical requirements unique to SPO at this point, 
although some are embedded into two-pilot requirements (e.g., EASA Annex VIII, SPO.IDE.A.126, FAA 
AC 91-100(0) Sect. 6). Thus, some Requirements from two-pilot operation, as well as references 
covering aspects of the Command and Control (C2) link and sense-and-avoid functionalities from RPAS 
have been considered relevant for SPO scenario. 

For two-pilot aircraft, the requirements for system design and installation are given under FAR 25, 
along with the communication (RTCA DO-238, ICAO 9869 AN/62), navigation (ICAO 9613 AN/937) and 
surveillance (RTCA DO-289, ICAO 9224) system requirements. For RPAS technical requirements, 
references are made to both civil and military domains. For civil aviation, Chapters 10 to 13 of ICAO’s 
Manual of RPAS makes technical recommendations for communications, surveillance and C2 systems. 
JARUS D.04 covers the required C2 link performance, Appendix C.3 of FAA’s roadmap covers the future 
technical requirements for integrating UAS into the civil airspace [25], including ground-
based/airborne sense and avoid, as well as C2 and interoperability requirements; these are expected 
to be (or have already been) captured in European Technical Standard Orders (ETSO) and RTCA 
Minimum Operational Performance Standards (MOPS) referenced in its Appendix. CAP 722 provides 
some guidance on system autonomy, as well as sense-and-avoid. Military regulations for unmanned 
systems are specified in NATO’s STANAG 4586 and DOD’s Unmanned Systems Integrated Roadmap – 
the former defines the interoperability and HMI requirements for RPAS in NATO’s Joint Service 
Environment while the latter recommends research areas to achieve greater interoperability.  

• Safety Aspects: 

While there are no specific safety guidelines for SPO, the necessary requirements are similar to (and 
can be derived from) two-pilot and RPAS operations. The safety requirements for system design are 
extracted from CS/FAR 25.1309 and the corresponding EASA AMC and FAA Advisory Circular 25.1309 
on showing compliance with fail-safe design. SAE provides Aerospace Recommended Practices for the 
development and design (ARP-4754A) and safety assessment (ARP-4761) of avionics systems. JARUS 
AMC RPAS.1309 provides a means of compliance for the safety and risk assessment of RPAS systems, 
also making reference to ARP-4754A, ARP-4761 and CAP-722. EUROCAE ER-010 accompanies 
RPAS.1309 and presents the safety objectives, risk assessment approach and guiding principles for 
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safety/risk assessment. CAP 722 Section 4, Chapter 4 offers additional guidance for general safety 
assessment, and ICAO 10019 AN/507 Chapter 7 provides guidelines for safety management in the 
operational context 

• Human Factors Aspects: 

The human factors considerations provide a framework for interface and interaction design, system 
behaviour, crew resource management (CRM) and human-machine teaming. FAA TC-13/44 is a recent 
report by the FAA, comprehensively addressing the human factors considerations on the flight deck. 
These include the design and evaluation of: display formats; the organization and content of 
information elements; visual and auditory alerting, control/input devices; design philosophy and 
function; error management, prevention, detection and recovery; workload and automation. 
Requirements relative to “Installed systems and equipment for use by the flight crew”   can be found 
in CS/FAR 25.1302, and guidance material on “the design and evaluation of controls, displays, system 
behaviour, and system integration, as well as design guidance for error management” can be found in 
EASA AMC and FAA AC 25.1302. . ARINC 837 goes into detail regarding design guidelines for cabin HMI. 
The SPO publications in this area are related to Single-pilot Resource Management (SRM) in GA-aircraft 
(CAAP 5.59-1(0)). For RPAS, CAP 722 provides an overview of the human factors issue in design, 
production, operations and maintenance. STANAG 4586, Appendix B3 provides the HMI requirements 
for interoperability within NATO operations, and Chapter 10 of the DOD Unmanned Systems Roadmap 
(11-S-3613) provides a discussion of past, present and future requirements of human-machine teaming 
with autonomous systems.” [16]. 
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5. Human Factors 

Human are good at reasoning, interpretation and problem solving. Unlike machines, they are able to 
adapt to new problems for which no rules or procedures already exists. However, they are prone to 
well-known limitations with regards to information processing. Humans can remember a limited 
number of information and have difficulties to perceive changes in their environment due to limited 
detection and vigilance capabilities [26]  .  

For decades, in order to address those limitations, automation has been integrated in complex 
systems. In the cockpit, the first autopilot has been introduced in 1912, contextual alarms and modern 
flight management system where integrated in eighties. Since then, automation has been the only 
answer to flight management and human computer interaction in the cockpit. The main drawback of 
this approach is that automation do more than simplify tasks for pilots, it also changes the nature of 
their tasks and can lead to the out of the loop syndrome described by Endsley & Jones in [27] as a 
Situation Awareness enemy with Requisite Memory Trap, Workload, Anxiety, Fatigue, Data Overload, 
Misplaced Salience, Complexity Creep, Errant Mental Models. 

The HARVIS project aims at considering also the Human Factors aspects of the introduction of a digital 
assistant in future cockpit. To do this, some theoretical and methodological framework will be 
applied: 

• Look for the correct balance between humans and machines, selecting the right tasks to 
automate and the right level of automation, paragraph 5.1. 

• Select the most appropriate level of automation considering the impact on safety and 
performance, paragraph 5.2. 

• Understand which Human Factors will be most impacted in the new scenario, paragraph 5.3. 

• Associate combination of Human Factors (e.g. specific levels of workload, attention, stress) to 
Human performance, paragraph 5.4. 

These frameworks form the basis on which the Human-Machine partnership concept will be built on 
(in Deliverable D2.2- Human-Machine Interface and Envelope) 

5.1. The interaction between automation and humans 

As postulated in research by Sheridan & Verplanck in [28] automation is not all-or-nothing, that is, 
automation is not only a matter of either automating a task entirely or not, but to decide on what task 
to automate and on the extent it should be automated.  

In fact, different tasks involve the use of different psychomotor and cognitive functions, which in turn 
implies the adoption of different automation solutions. For example, expanding human capabilities to 
monitor a certain process (e.g. a Remote Tower) is not the same as replacing the human in the 
execution of a certain action (e.g. the aircraft auto-braking system). Similarly supporting the analysis 
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of a complex dataset, such as that involved in predicting the risk of a traffic conflict, is not the same as 
identifying the best solution to resolve the conflict. 

Automation then is not seen to replace operators but to empower them and to improve the overall 
performance of systems as clearly defined in [29] the research network on Higher Automation Levels 
in Aviation (HALA!). This approach is similar to the one followed in the early 80’s when flying crew for 
large civil aircraft was reduced from three to two by adding sophisticated Flight Management Systems 
(FMS) [30].  

However, it is important to design this automation very carefully taking into account the elements of 
Complex adaptive socio-technical systems (CAS). As clearly pointed out by Lisanne Bainbridge in [31] 
automation malfunctions end up most of the time in the hands of operators that were precisely 
supported with automation as their tasks were too complex or too resource consuming. Moreover, 
introducing higher level of automation requires (beyond design issues) an evaluation of the impact 
which the new technology may have on each CAS part (operator, computing system and organisation) 
such as tasks migration and/or functions allocation [32].  

On the top-right side of Figure 6, Air Traffic Controllers communicate with pilots via data link or transfer 
aircraft interacting on the electronic labels of the aircraft on the radar screen instead of using paper 
strips and communicating by voice using Very High Frequency medium.  

Similarly, on the airborne side (lower part of Figure 6), glass cockpits [33] provide a means for 
integrating information to support pilots activities while this information was previously distributed 
amongst multiple displays throughout the cockpit.  

In both cases, task migration and/or functions allocation require that humans improve their 
knowledge, learn how to interact and collaborate with the new technology for accomplishing tasks. 
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Figure 6: The enhancement of integrated automation support in ATCs and cockpits over time. 

 

In automated systems, function allocation [34] between human and machine has always been a point 
of controversy. In the context of automation, “functions allocation” means that the actor (either 
human or machine) that is best suited (based on some continuum of parameters) should perform the 
function. The basis for selection and grading of such parameters is at the heart of the issue of function 
allocation and has been subject to much investigation over the years. 

The selection of the HARVIS solution will be based on the selection of the right tasks to be automated 
(considering the future scenario described in the previous paragraphs) and a framework that considers 
the pros and cons of the delegation of them to the machine, looking for a safe and efficient balance. 
Such a framework has been already be applied in previous EU funded projects (NINA, STRESS) and is 
described in the next paragraph. 

5.2. Levels of automation taxonomy 

The approach proposed by Fitts with his Men are best at – Machines are best at (MABA-MABA) list 
[35], relied on the idea that, given a set of 44 pre-existing tasks, one should decide which ones are 
worth automating, considering the strengths and weaknesses of respectively humans and machines. 
Although this approach is now deemed outdated, there is still limited awareness of the fact that 
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introducing automation brings qualitative shifts in the way people practice, rather than mere 
substitutions of pre-existing human tasks. 

An initial scale of levels of automation was proposed by Sheridan & Verplanck in [28] representing a 
continuum of levels between low automation, in which the human performs the task manually, and 
full automation in which the computer is fully autonomous (see Figure 7). 

 

Figure 7: Levels of Automation of Decision and Action Selection by Sheridan and Verplanck 

A decisive step was made in [36] by Parasuraman et al. who acknowledged the Sheridan-Verplanck 10-
point scale and introduced the idea of associating levels of automation to functions (Figure 8). These 
functions are based on a four-stage model of human information processing and can be translated into 
equivalent system functions:  

(1) information acquisition,  
(2) information analysis,  
(3) decision and action selection and  
(4) action implementation.  

The four functions can provide an initial categorisation for types of tasks in which automation can 
support the human. 

 

Figure 8: A model of types and levels of automation by Parasuraman et al. 

http://www.harvis-project.eu/


EDITION 00.03.01 

 

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) 
under grant agreement No 831884. The JU receives support from the European 
Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 
JU members other than the Union 
 

36 
 

 

Most of the time automation is only partial keeping the operators in the loop so that they can forecast 
what will happen next and interfere with automation in case of adverse events or automation 
malfunction. The design of this cooperation requires understanding how to balance automation and 
interactivity and specify how a task can be performed by assigning the generic functions to the 
operator and the system in terms of function allocation. “Function allocation cannot be based on a 
consideration of the tasks only, but must consider the total equilibrium of a work situation—
corresponding to a notion of balanced work. The concept of equilibrium emphasises the fact that a 
change in function allocation disturbs the established equilibrium. This will have consequences for the 
system as a whole, and one result may be that a new equilibrium is established which differs 
significantly from the previous one.” 

Previous work on automation can be divided according to three different perspectives:  

1) the design perspective which focuses on how to engineer the computing systems (offering 
automation) and more precisely its user interface [37];  

2) the evaluation perspective which focuses on how to assess the operational aspects of 
automation including performance impact of automation on operations [38], [39];  

3) the human perspective which focuses on how to understand the role of the operators who 
deal with a new technology or a different level of automation [38], [40] 

While this research work has been mostly conducted in separate fields, as the increase of automation 
might come along with an increase of performance variability of the whole aviation system especially 
in case of new automated systems, there is a need to provide an integrated view on these disjoint 
research activities [41]. 

In the framework of the SESAR Programme, a Level Of Automation Taxonomy (LOAT) has been 
developed to classify and compare different kinds of automation support [40]. The LOAT (Figure 9) is 
based on the taxonomy of Endsley & Kaber and the principles of Parasuraman, which combines 
cognitive functions and levels of automation, and on ideas from activity theory and distributed 
cognition [42]. Its purpose is to classify automation examples in a practical way. The Taxonomy is 
organised as a matrix. In the horizontal direction, four functions are depicted: information acquisition, 
information analysis, decision and action selection, and action implementation. A consequence of 
having four functions – different in nature – is that each function can be automated at different levels. 
In line with this, vertically, each cognitive function groups a number of automation levels (between 5 
and 8). All automation levels start with a default level 0, corresponding to manual task 
accomplishment, and increase to full automation. Automation level 1 is based on the principle that the 
human is accomplishing a task with primitive external support, which is not automation as such. Any 
non-automated means that support the human mind, e.g. using flight strips to compare parameters of 
different aircraft and to pre-plan future traffic, could correspond to this intermediate level.  

The classification of the level of automation is provided according to the concerned cognitive function. 
This means that a certain technology may have different levels of automation according to whether 
we look at the information acquisition (A), information analysis (B), decision-making (C) or action 
implementation (D) fields. Examples of technologies are included in the LOAT, to facilitate the reader 
in understanding how to interpret and use the table for the classification of a technology. Figure 9 
presents a simplified version of the LOAT. The full version is provided in Appendix A. 



D1.1:  STATE OF THE ART REVIEW  

  
 

 

© – 2019 – Skylife Engineering, Ecole Nationale De L’aviation Civile, Universitat 
Politecnica De Valencia, Deep Blue. All rights reserved. Licensed to the CS2 Joint 
Undertaking under conditions 
www.harvis-project.eu 
 

37 
 

 

 

Figure 9: The LOAT (from dblue.it/projects/project-levels-automation-taxonomy) 

The way LOAT is designed demonstrates the following principles [40]:  

• An automated system cannot have one ‘overall’ level of automation as such. In other words, a 
statement about a level of automation for a system always refers to a specific function being 
supported;  

• One automated system can support more than one function, each having a different level of 
automation;  

• The description of each automation level follows the reasoning that automation is addressed 
in relation to human performance, i.e. the automation being analysed is not just a technical 
improvement but has an impact on how the human is supported in his/her task 
accomplishment.  

It should be kept in mind that these generic functions are a simplification of the many components of 
human information processing. The functions are not meant to be understood as a strict sequence, 
but they may temporally overlap in their processing. From a practical point of view, the human may 
be performing a task that involves one or several functions. However, it is useful to differentiate the 
subtleties between the functions when one wants to identify how a specific automated system 
supports the human. 

5.2.1. Automation support to ATCOs and pilots tasks  

Pilot and Controller tasks are not automated in the same way [43]. Aircraft automation is sometimes 
considered to be more advanced than ATC automation. This perception is only partially true, as it 
seems to disregard the nature of pilot and controller activities, at least to the extent that non-pilots 
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sometimes understand them. Pilot tasks are much more “Action Implementation” oriented than 
controller tasks, for which the emphasis is more on monitoring, planning and communicating. 
Therefore, the replacement or support of a human action – which is normally perceived as “real” 
automation – is inevitably more successful when pilot tasks are concerned.  

In the limited number of automated functionalities reported as examples in the LOAT, there is a 
prevalence of “Information acquisition” and “Information Analysis” functions in ATC-related 
automations. Examples of this were the Multi-Radar Tracking system display, the Short Term Conflict 
Alert (STCA) system, the Medium Term Conflict Detection (MTCD) system and the Tactical Controller 
Tool (TCT). On the other hand there was a clear prevalence of “Action Implementation” functionalities 
among aircraft automations. For instance, the Autopilot following a FMS trajectory, the Autobrake 
system and the ASAS-ASPA (Airborne Separation Assistance – Airborne Spacing system) capability. 
Finally a more balanced distribution between ground and aircraft was observed for the “Decision and 
Action Selection” automations, although the ATC functionalities were generally less mature and were 
providing a lower level of support. The Arrival Manager (AMAN), which is a good example of ATC 
“Decision and Action Selection” functionality, is increasingly prevalent but in most of the cases it 
provides just a useful reference that the controller may decide to follow or not, depending on 
operational circumstances. This kind of support is at a considerably lower level than that offered, for 
example, by the Resolution Advisory (RA) of the Traffic Collision Avoidance System (TCAS) which 
indicates to the pilot one single and directed action to avoid possible collision with conflicting traffic. 

It is interesting to note that some of the aircraft functionalities analysed also included “Information 
Acquisition” and “Information Analysis” components. However these were generally acknowledged to 
be less sophisticated than the ATC-related ones (consider the example of the TCAS Traffic Display 
which is known to be of limited functionality relative to controllers' radar displays and well known to 
be unusable by pilots as a means of self-separation). Much more sophisticated “Information 
Acquisition” functionalities are beginning to be introduced for the flight deck and we looked at ATSAW-
SURF (Air Traffic Situation Awareness for Surface Operations) – which uses Automatic Dependent 
Surveillance - Broadcast (ADS-B) capability. More than just a simple technological improvement, this 
will, subject to the development of operator procedures, make possible a partial delegation to pilots 
of tasks which have previously been an exclusive prerogative of ATC. 

5.3. HFs relevant concepts in future scenarios 

Technological and organizational changes constantly bring about a practical need to know about the 
cognitive and emotional processes of the operators. Most of the proposed changes deriving from the 
implementation of the future scenario described in the previous paragraphs are expected to increase 
the pilot’s autonomy in controlling the route of their aircraft, including the requirement to maintain 
required separation between aircraft. Flight time, delays and fuel expenditures are all expected to 
profit from such changes.  

The pilots’ role would be shifted from that of an active controller to one more like that of a monitor 
[44][45]. As systems become more automated, and humans move to monitoring positions, the weight 
of stress is likely to grow. A typical case is the automation disruptions, when humans have to react 
quickly in highly stressful conditions. In these cases, stress is known to influence performance and 
impair attention, memory, and decision making [46]. The relevance of stress is also recognised by 
EASA, that in the Notice of Proposed Amendment (NPA) addresses the issue of licensing and medical 
certification of air traffic controllers [47], considering stress and fatigue management as an essential 
topic for training (AMC1 ATCO.D.045(c)(4) Human Factors training).  
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The HARVIS project will work on a solution what will not impact negatively pilots’ cognitive state. 
Particular attention will be paid for those Human Factors which are more likely to be impacted when 
reduced crews have to interact with a partially autonomous system. In the following section a review 
of the frameworks for understanding these factors are provided.  

5.3.1. Stress 

According to psychological theories stress is determined by the balance between the perceived 
demands from the environment and the individual’s resources to meet those demands [48], [49].  

So stressful experiences arise as person-environment transactions. These transactions depend on the 
impact of the external stressor. This is mediated firstly by the person’s appraisal of the stressor and 
secondly on the social and cultural resources at his or her disposal [50]. When faced with a stressor, a 
person evaluates the potential threat (primary appraisal). Primary appraisal is a person’s judgment 
about the significance of an event as stressful, positive, controllable, challenging or irrelevant. Facing 
a stressor, the second appraisal follows, which is an assessment of people’s coping resources and 
options. Secondary appraisals address what one can do about the situation. Actual coping efforts 
aimed at regulation of the problem give rise to outcomes of the coping process. 

Lazarus has drawn a distinction among three kinds of stress: harm, threat, and challenge. Harm refers 
to psychological damage that had already been done, as for example an irrevocable loss. Threat is the 
anticipation of harm that has not yet taken place but may be imminent. Challenge results from difficult 
demands that we feel confident about overcoming by effectively mobilizing and deploying our coping 
resources. These different kinds of psychological stress states are presumably brought about by 
different antecedent conditions, both in the environment and within the person. They are relevant in 
the framework of our research as they can have different consequences in terms of human 
performance.  

For example, threat is an unpleasant state of mind that may seriously block mental operations and 
impair functioning, while challenge is exhilarating and associated with expansive, often outstanding 
performance. To the extent that we take these variations seriously, stress cannot be considered in 
terms of a single dimension such as activation. The recognition of the different dimensions of stress 
involves considering diverse emotional states (some negative, some positive) and different impact on 
performance. 

The model also highlights that the relation between stress and performance is not linear. In fact, stress 
is normal up to a point and can be optimal for certain performance related tasks, while it becomes a 
problem when interfering with a person’s ability to do daily life tasks over a period of a few weeks or 
impacting his/her health in a dangerous or risky way. It has been seen that stress can influence 
performance and may impair attention and memory, and can contribute to an increase of human 
errors and accidents. In general, stress affects how we perceive and process information, as well as 
what decisions we make, leading to an increase in the number of errors and mistakes. 

From a physiological view, a typical stress response means that autonomic activity increases, although 
in certain situations and in certain individual’s the stress response might be different (even a decrease 
is possible). The basis of the physiological stress model has its roots in the research activity of Walter 
B. Cannon and later Hans Selye. Cannon [51] developed the “fight-flight” concept, which linked 
emotional expressions, such as fear, to physiological changes in the periphery. He emphasized the 
activation of the Sympathetic Adrenal Medullary (SAM) system in such situations, irrespective of 
whether the emergency reaction was “fight” or “flight”. The more reactive biomarkers of the fight-
flight response are the catecholamines, in the form of adrenaline and noradrenaline, which increase 
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when stress appears, and other physiological indicators associated with the Autonomic Nervous 
System (ANS). Selye [52] theorized the General Adaptation Syndrome (GAS) to model the dynamic of 
the human body adaptation to stressful environmental conditions. Therefore, the SAM system is 
activated when the individual is challenged in its control of the environment, or is threatened, and this 
defence reaction prepares the body to battle or escape. Increased adrenaline under normal levels of 
stress is associated with improved performance. In fact, several studies show that stress, but only up 
to a certain level, improve performance, e.g. on selective attention tasks [53]. In fact, the cognitive 
psychology literature demonstrates that activation has an ‘‘inverted U-shape’’ relationship with 
performance in that some levels of activation may help an individual to perform at a level that is higher 
than their baseline state [54]. LeBlanc et al. (2008) noted that general surgery residents had improved 
technical performance on training tasks while dealing with stress conditions. On the other hand, 
excessive activation may lead to severe stress that overpowers an individual or team, with resulting 
impairment in memory, attention, decision-making, and general performance, regardless of previous 
training [46]. 

Therefore, stress is a physiological response to the mental, emotional, or physical challenges that we 
encounter. The immediate body's “fight or flight" response causes hormones secretion into the 
bloodstream to intensify concentration and quicken reflexes. From a physical point of view, several 
reactions related to the ANS activation can be measurable, such as increased heart rate skin sweating. 
Under healthy conditions, the body returns to its normal state after dealing with acute stressors.  

Stress can be categorized into two basic forms: acute stress, relatively short in duration and is often 
experienced as caused by high task load; chronic stress, prolonged stress that can result from 
occupational or non-occupational sources. Four possible situations that may cause chronic stress: too 
frequent stress exposure, failure to habituate to repeated exposure of the same kind of stressor, 
inability to shut off the stress response, despite that stress has terminated, and situations that cause 
regulatory disturbances of the stress system. 

Continuous monitoring of an individual's stress levels is essential for understanding and managing 
personal stress. 

5.3.2. Attention 

Attention is the ability to attend to information in the environment [55]. 

In particular, attention allows us to process selectively the vast amount of information whom we have 
to face, prioritizing some aspects of information while ignoring others by focusing on a certain location 
or aspect of the visual scene [56]. Attention can be classified into three main components: 

• Selective attention: The ability to process or focus on one message in the presence of 
distracting information. 

• Divided attention: The ability to process more than one message at a time. 

• Visual attention: The mechanism determining what information is or is not extracted from our 
visual field. 

One important concern for a notification system in the aviation field is that seemingly prominent 
objects in the visual field can sometimes elude attention despite their relevance and importance to 
the primary task [57]. This phenomenon “inattentional blindness” [58], [59] can occur even when a 
stimulus is salient in terms of its colour or movement, thus posing a challenge for the design of safety-
critical emergency alerts. The likelihood of inattentional blindness is increased with the attentional 
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demands of the task [60], working memory load [61], the need to maintain information in visuo-spatial 
memory, low expectancy of events [26] and during periods of high tempo activity with competing 
visual demands [62]. An object is more likely to be detected if it is near the focus of visuo-spatial 
attention [59], but proximity is not sufficient for detection and it can still be missed [58]. In demanding 
tasks, operators may experience attentional narrowing or ‘tunnelling’ [63] and become fixated on a 
particular facet of their task, to the exclusion of other equally – or perhaps more – important aspects 
of the environment [64]. 

Neuroimaging studies related to attention have revealed three networks related to different aspects 
of attention: alerting, orienting, and executive control [65]. 

• Alerting is defined as maintaining a state of high sensitivity to incoming stimuli, and is 

associated with the frontal and parietal regions of the right hemisphere [66].  

• Orienting is the selection of information from sensory input, and it is associated with 

posterior brain areas including the superior parietal lobe (related to the lateral 

intraparietal area in monkeys), the temporal parietal junction and the frontal eye fields 

[67].  

• Executive control is defined as involving the mechanisms for resolving conflict among 

possible responses. It activates the anterior cingulate and the lateral prefrontal cortex 

[68]. This attention network affects visual processing, which is one of the most efficient 

ways to enhance the stimulus representation for the purpose of selection. 

Shift in attention need not entail an overt shift of the eyes. Nevertheless, spatial attention and the 
eyes often move about the environment in “tandem”. For example, an abrupt onset in the visual 
periphery can reflexively “capture” both attention and the eyes [69], [70]. In this way, attention can 
be allocated in overt or covert modality: overt, when an observer moves his/her eyes to a relevant 
location and the focus of attention coincides with the movement of the eyes, or covert [71], when 
attention is deployed to relevant locations without accompanying eye movements. The deployment 
of covert attention aids us in monitoring the environment and can inform subsequent eye movements. 
Humans deploy covert attention routinely in many everyday situations, such as searching for objects, 
driving, crossing the street, playing sports and dancing. Covert attention allows us to monitor the 
environment and guides our eye movements (overt attention) to locations of the visual field where 
salient and/or relevant information is. Moreover, covert attention plays an important role in social 
situations, for example, in competitive situations (such as sports activities). Moving the eyes also 
provides a cue to intentions that the individual wishes to conceal, a predicament solved by covert 
attention. 

Spatial resolution, our ability to discriminate fine patterns, is not uniform across locations in the visual 
field. It decreases with eccentricity. Correspondingly, signals from the central parts of the visual field 
are processed with greater accuracy and faster reaction times [72]. 

Lack of attention/vigilance or distraction usually affects human performance by causing the omission 
of procedural steps, forgetfulness to complete tasks, and taking shortcuts that may not be for the 
better. A performance decrement can be noticed when attention/vigilance, workload and task 
difficulty increase; the reaction time and number of errors increase as well, while accuracy and number 
of completed tasks decrease. Reduction of the performance in monitoring, tracking, auditory 
discrimination, and reduction of visual field can be observed too. 

5.3.3. Mental workload 
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Mental workload is a hypothetical construct that describes the extent to which the cognitive resources 
required to perform a task have been actively engaged by the operator. 

The term is used to describe aspects of the interaction between an operator and an assigned task. 
Tasks are specified in terms of their structural properties; a set of stimuli and responses are specified 
with a set of rules that map responses to stimuli. On the other side, there are expectations regarding 
the quality of the performance, which derive from knowledge of the relation between the structure of 
the task and the nature of human capacities and skills. Workload is invoked to account for those 
aspects of the interaction between a person and a task that cause task demands to exceed the person’s 
capacity to deliver. Mental workload is clearly an attribute of the information processing and control 
systems that mediate between stimuli, rules and responses. 

Increase of workload and task difficulty lead to a performance decrement that reflects in a decrease 
of accuracy and number of completed task, while reaction times and number of errors increase.  

The increase of mental workload could lead to a Situation Awareness decrease which, in turn, could 
lead to worse performances. However, the adoption of compensation strategy can result in the lack of 
visible effects of workload variations on subject performance. 

5.3.4. Cognitive control 

The efficiency of humans in coping with complex situations is largely due to the availability of a large 
repertoire of different mental representations of the environment from which rules to control 
behaviour can be generated ad-hoc. Nowadays, several models defining the different types of 
cognitive human behaviour are available [73] such as the Skill, Rule and Knowledge (SRK) model, 
proposed by Rasmussen in 1983 [74]. Accordingly with basic different ways of representing the 
constraints in the cognitive human behaviour, three typical levels emerge: skill-, rule-, and knowledge-
based level [75].  

At the skill-based level, the types of activity are usually routine and automated, such as annotating 
flight strips for air traffic controllers. For the pilot, it can be seen as the aircraft handling which is clearly 
linked to the level of flight training. This type of behaviour tends to encourage errors which are 
associated with attentional or memory failures. 

At the rule-based level of activity, an individual uses certain types of response to known and often 
rehearsed scenarios. For instance, in the ATC environment, standard operating procedures would be 
classed as rule-based behaviour. The use of separation procedures and weather limits would also be 
classed as a similar type of activity. The pilot working method is oriented to Rule-based behaviour even 
in emergency situations thanks to do-lists, check-lists and Crew Ressource Management (CRM). Rule-
based mistakes involve the application of already known but inappropriate solutions to problems that 
have been encountered many times before or which have been highly trained. Rule based mistakes 
can be divided into two types: the misapplication of good rules and the application of bad rules. 

Knowledge-based behaviour is the result of skill, ability, observation, training and experience. These 
variables enable the individual to tackle novel, difficult or even dangerous situations with adequate 
reliability and in most cases the likelihood of a successful outcome. Knowledge-based mistakes occur 
when a person is attempting to solve a novel problem, namely searching for a solution to a problem 
which has not been previously encountered in training or experience. The main problems with this 
situation are that the individual is forced into a position of active reasoning and retrieval from long-
term memory, which has an influence on the working (mid-term) memory capacity. Non-standard 
emergencies where no procedures or checklists exists may induce a Knowledge based behaviour. 
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Nevertheless, to cope with those situations, pilots have to use a method like FORDEC.  FORDEC is the 
model used by the EU/EASA/JAR NOTECHS (non-technical skills) as Behaviour Marker for CRM Skills. It 
is being use by a lot of companies worldwide to handle non-standard emergencies. 

FORDEC is an acronym and stands for: 

• F – Facts (what is the problem) 

• O– Options (hold, divert, immediate landing etc.) 

• R – Risks/(Benefits sometimes included) (what is the downside of each option, what is the 
upside, i.e. a runway may be further away but is longer) 

• D – Decide (which option) 

• E – Execute (carry out selected option) 

• C – Check (did everything work/go to plan, what else needs to be done) 

Table 2 provides an overview of the levels of cognitive control. 

 

 
Mainly conscious type 

of control 

Conscious & 
Automatic type of 

control 

Mainly automatic 
type of control 

Routine- expected 
situation 

  SKILL-BASED 

Familiar or trained-for 
problems 

 RULE-BASED  

Novel, difficult or 
dangerous situations 

KNOWLEDGE-BASED   

 

Table 2. Levels of cognitive control 

5.4. Human Performance 

Pilots’ performance is recognised to be impacted by all the aforementioned factors, namely, stress, 
emotions, attentional resources available, attention focus and so on. In the recent years the concept 
of Human Performance Envelope (HPE) [76] has been introduced as new paradigm in Human Factors. 
Rather than focusing on one or two individual factors (e.g. fatigue, situation awareness, etc.), it 
considers their full range, mapping how they work alone or in combination to lead to a performance 
decrement that could affect safety. 

5.4.1. Automation impact on Human Performance 

The HP envelope currently being considered by the Future Sky Safety project is a first good 
approximation of what may be expected: a prominence of workload and stress, then attention, 
communication, vigilance, and fatigue (see Figure 10). 
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Figure 10: The HP envelope being considered by the Future Sky Safety project for pilots 

It is reasonable to expect that the future pilot HP envelope will be different than the one we would 
use today. It will have different underlying HF concepts, or at least a different weight among them. For 
instance, pilots are expected to move to a monitoring position of highly automated systems, with very 
few tactical interventions, strategic planning by exception (only when automation cannot find a 
solution), need to intervene rapidly to recover disruptions or unexpected events.  

Workload may be even less primary, but with sudden bursts when recovery actions are needed. Stress 
will be indeed a major factor, both in normal conditions (when pilots will need to rely on automation 
without having the possibility of controlling it) and in disruptions. Such a monitoring role will probably 
require even more attention that pilots today. 

A full understanding of the future HP envelope and of the underlying HF factors will allow the 
optimization of Human Performance, by identifying human bottlenecks and limitations. This concept 
is aligned with the ACARE Strategic Research Agenda [77]. 

This concept applies to nominal conditions, when the HP envelope analysis would determine the 
human bottlenecks to higher automation levels, e.g. lack of trust, too high stress level, or lack of 
adequate attentional patterns. But it is also relevant in degraded conditions, where it will be possible 
to track the temporal variations of the HP envelope. As a practical example, this could mean forecasting 
what would typically happen to the stress and workload levels in case of automation disruptions and 
when their levels could be considered “back to normal”. 

In the framework of the already mentioned SESAR 16.05.01 project, a method to identify design 
principles linking the level of automation with HP issues, has been generated (see an excerpt of it in 
Table 3). It has to be noted that the results of this investigation are highly related to the knowledge on 
HFs currently available, and to experiments conducted with currently available automated tools. 
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Table 3. Example of design principles and HP impact of different automation levels 

Cognitive 
Functions 

Automation 
support 
example 
(current): 

Example of design principle for 
selecting a specific automation 
level 

Impact on HP 

Information 
Acquisition 
(IAC) 

Acquisition and 
registration of 
multiple 
sources of 
information. 
Initial pre-
processing of 
data prior to full 
perception and 
selective 
attention. 

 

• Visualization 
of traffic on 
CWP through 
Multi-Radar 
Tracking 
System.  

• Advanced - 
Surface 
Movements 
Guidance and 
Control system 
(A-SMGCS) 
airport moving 
map  

IAC-1.1: Level A2 

These functions transmit 
information on the process to be 
followed without any filtering, 
highlighting and integration of 
the available data. These 
functions should be preferred 
when the two following 
conditions are met: 

-the concerned activity requires 
the processing of a limited 
number of information items by 
the human operator 

-the information can be 
accessed through a limited 
number of information sources. 

•  Increase task demand 
and cognitive workload 

• Simultaneous tasks 
competing for user 
attention or causing 
interruptions of high 
workload activities, 
reducing efficiency and 
increasing the risk of 
human error 

• Excessive ‘head down’ 
time, with potential 
negative impact on 
human performance 

• Reduce accessibility to 
relevant information, 
with negative impact on 
decision making 
processes and situation 
awareness. 

Information 
Analysis (IAN) 

Conscious 
perception, 
manipulation of 
information in 
working 
memory. 
Cognitive 
operations 
including 
rehearsal, 
integration, 
inference. 

• STCA-
Minimum Safe 
Altitude 
Warning 
(MSAW)-
Approach Path 
Monitor  
(APM)-Area 
Proximity 
Warning 
(APW) visual 
and aural 
alerts 

• A-SMGCS 
route-planning 
function 

• MTCD 
conflict 

IAN-1.2: Levels B4-B5 

These functions perform 
systematic information analysis 
and trigger automatic alerts as 
appropriate. These functions 
should be preferred when the 
two following conditions are 
met: 

- for operational reasons the 
user should be informed as soon 
as possible of critical results of 
the information analysis 

- the internal logic of the 
automated function has the 
capability to process the most 
relevant operational constraints 
and/or dynamic elements of the 
concerned operational 
environment with an impact on 

• Induce workarounds 
and higher workload in 
human operators. 

•  Induce misuse, disuse 
or abuse of automation 

•  Distrust in automation 
and increase workload 
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alerting 
function 

• Monitoring 
Aids (MONA) 
alerts 

• A-SMGCS 
alerts 

the performance of the function, 
thus reducing the risk of 
triggering nuisance alerts to an 
effective minimum. 

Decision and 
Action Selection 
(DAS) 

Selection 
among decision 
alternatives, 
based on 
previous 
information 
analysis. 
Deciding on a 
particular 
(‘optimal’) 
option or 
strategy. 

 

• AMAN 
visualization of 
proposed 
sequence of 
aircraft  

• AMAN 
speed 
advisories 

DAS-1.3: Levels C5-C6 

These functions do not inform 
the human of the selected 
option or inform her/him only on 
request. 

These functions should be 
preferred when it is possible to 
safely and efficiently isolate a 
limited set of parameters and 
variables to be managed 
autonomously by the 
automation. In such cases the 
best way of generating decisions 
is delegating them to the 
automated function, leaving to 
the human operator only the 
possibility to interrupt the 
following action implementation. 

• Increase task demand 
and cognitive workload 

• Increase task load and 
reduced acceptance. 

Action 
Implementation 
Support 
Functions (AIS) 

Implementation 
of a response or 
action 
consistent with 
the decision 
previously 
made. Carrying 
out the chosen 
option. 

 

• Automatic 
Flight Plan 
Correlation 
function 

• Automatic 
Special Service 
Request (SSR) 
code 
assignment 
function 

AIS-1.1: Levels D2-D3-D4 

This level, which perform action 
implementation only after 
human initiation, should be 
preferred when it is not possible 
to safely and efficiently isolate a 
limited set of parameters and 
variables to be managed 
autonomously by the 
automation. In such cases the 
best strategy for action 
implementation is based on a 
cooperation between the human 
operator and the automated 
function, maintaining the human 
fully in control of the situation. 

• Reduced vigilance and 
loss of situation 
awareness 

• Loss of skills and 
proficiency 

• Impact recovery from 
system failure 

• Reduce situation 
awareness. 

• Induce workarounds 
and higher workload in 
human operators. 

• Reduce the human 
potential to adapt to 
normal and abnormal 
situations 

A brand-new contribution will be the study of the transitions among levels, providing information 
about the impact of transition on HP and generating guidelines to cope with them minimizing system 
performances degradation. 
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5.4.2. The Human Performance Envelope 

From a theoretical point of view, the idea behind the HPE is that specific combination of different levels 
of relevant cognitive aspects will positively or negatively impact human performance. Figure 11 
provides some simple (fictional) examples: high levels of attention and vigilance, low levels of stress 
and workload and a mainly skilled type of behavior will produce a good level of performance (green) 
while opposite values will decrease the level of performance (red), pushing the operator out of his/her 
“envelope”. 

 

 

 

 

 

 

 

 

During the project, we will consider the impact of the proposed solutions on the relevant human 
factors identified in the previous paragraphs. In doing this, we will consider only the impact on single 
factors but on many of them and on the mutual impact they have on each other. 

 

Figure 11: Examples of the Human Performance Envelope concept 
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6. Machine Learning (ML) and Cognitive 
Computing (CC) algorithms 

6.1. Introduction 

Human beings have always tried to understand what makes them think, in order to recreate this ability 
in intelligent machines. A first example comes from ancient Greece by the hand of Aristoteles, whose 
work was based on explaining the rational functioning of the mind [78]. Ramon Llull proposed the idea 
that reasoning could be captured in a machine in an artificial way, introducing the concept of logical 
machines [79], capable of creating knowledge by combining undeniable truths through simple logical 
operations. Additionally, Hobbes promulgated that reasoning was nothing more than calculations [80]. 
These examples and many others propitiate the birth of artificial intelligence (AI) dates from remote 
origins. From these origins to the present, psychologists, engineers and mathematicians have 
contributed to the AI development. 

In the 1950s, Alan Turing published the article "Computing Machinery and Intelligence", in which he 
went into the idea that a machine can imitate how the human mind works [81]. In addition, he 
proposed a mechanism capable of determining whether a machine is intelligent, known as the "Turing 
test". Just a year later, Marvin Minsky was inspired by the model proposed by Nicolas Rashevsky in 
1930 to give rise to the first digital neural network [82]. However, the term artificial intelligence did 
not exist as such until 1956 after its assignment at the Dartmounth congress, organized by different 
researchers interested in developing machines that imitate human behaviour. At that conference, 
Professor John McCarthy of Stanford University named artificial intelligence, which he defined as "the 
science and ingenuity of making intelligent machines, especially intelligent computer programs".  
During the meeting, which lasted two months, future lines of action in this field were defined, starting 
from the hypothesis that "any aspect of learning or any other characteristic of intelligence can be 
defined so precisely that a machine can be built to simulate it" [83]. 

During the following years, the high expectation about this field led to a bad time for artificial 
intelligence in the 1970s and 1980s, with three major setbacks [84]. In 1973, the first of these took 
place after an investigation into the concept of the automaton, the central nervous system and robots.  
James Lighthill wrote an article about this research [84] concluding that no progress was being made 
in artificial intelligence; all this accompanied by the suspension of funding for research on intelligent 
systems. Later, in 1982, a computer was designed in Japan that would be capable of deducing and 
processing knowledge, in which up to 850 million dollars were invested, but after ten years no progress 
was made, giving rise to the second setback [84]. Finally, in 1984, the third setback occurred. In this 
case, Stanford University began to create Cyc, an encyclopaedia that encompassed all human 
knowledge. In the late 1990s, however, it was overtaken by Internet search engines [84].  
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A key conclusion was drawn from these failed experiments. Prior to the creation of intelligent 
computers, it was necessary to know how to provide them with the required information. The main 
problem was that although some knowledge was innate, most was learned from the experience, so 
that they cannot be supplied entirely by the human being, so machines had to learn themselves from 
the environment, either with databases or search engines. 

Since 1990 the term "Cognitive Systems" has been used, which mainly aims to speak of AI not simply 
as the development of artificial systems but as the ability to teach computers to think like human 
beings, much more quickly, providing these systems with technology that models the biology of the 
human brain. This era is known as “congenital or cognitive computing” and it is characterized by the 
combination of the most advanced computing with nanotechnology and neuroscience, achieving 
computers with knowledge, capable of learning from past experiences, extracting hypotheses and 
offering answers [85]. 

Capturing information from the environment is of extreme importance for artificial intelligence. 
Nowadays, a huge amount of data is being daily generated and changing continuously, making Big Data 
technique essential in the 21st century [86], [87]. An example of how big data has been introduced 
into intelligent systems is clearly illustrated in IBM's Watson computer [88]. This computer stored 
around 200 million pages of data in its memory, consuming a capacity of four terabytes of storage, 
which allowed this device to defeat in February 2011 the strongest opponents of the American 
television program Jeopardy's, in an open-domain answering match. Watson was not revolutionary in 
AI because the amount of data he stored, but due to its ability to read clues in natural language. 
Watson was able to extract the main idea of the clues precisely, and then search for the answer among 
his internal information sources. With the help of Machine Learning, the answer with the largest 
confidence level was selected as the definitive solution.  

Another revolutionary system, known as AlphaGo, was created by DeepMind. This machine, thanks to 
the use of Deep Learning taught itself to play Go, making hundreds of games and learning in each of 
them [89]. AlphaGo was able to evaluate positions and select movements, becoming the first machine 
capable of defeating Lee Se-Dol (the world champion in Go) in 2016. This event caused an important 
revolution in the media, as AlphaGo carried out a special game mode, superior to the human ability to 
calculate probabilities of defeating his opponent. Today, DeepMind is working on a similar project 
oriented to the Starcraft game [90], [91]. 

The aforementioned projects are just some pieces of evidence of how the social demand for intelligent 
systems has grown considerably in recent years. Many areas of daily life, such as the automotive, 
industrial, medical, aeronautical and financial sectors among others demand digital assistants which 
allow reducing costs. This social demand has forced the creation of what is known as artificial 
intelligence 2.0. In this sense, two main goals are proposed, which are to achieve hybrid intelligent 
systems combining machines and humans, and to create more complex intelligent systems, commonly 
known as "man-in-the-loop" [84]. During the next sections and in-depth analysis about the impact of 
artificial intelligence 2.0 on economy in general and several sectors of activity in particular is carried 
out. 
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6.2. Impact of AI and CC on companies and worldwide economy 

With the arrival of the industrial revolution at the end of the 18th century, there was a great change 
in employment. On the one hand, jobs increased in the industrial sector and to lesser extent services, 
to the detriment of the agricultural sector, due to the incorporation of machinery in factories and 
agricultural work. With the incorporation of this machinery, it was possible to complement and extend 
the manual work developed by people, replacing some jobs but, at the same time, improving 
productivity and adjusting the products of the companies to the needs of the consumer [92]. 

Later, with the digital revolution in the mid-twentieth century, this trend was intensified with the 
advent of the Internet and computers, increasing employment in the service sector and decreasing the 
manufacturing industry and the agricultural sector. In this case, it was computers that complemented 
people's daily activities. By automating processes, it was possible to replace repetitive mental tasks 
carried out by workers, resulting in a change in the employee's profile [93], [94]. 

An analogy between these two revolutions and the one that artificial intelligence is expected to 
generate can be established. On the one hand, given the high potential of this technology, intelligent 
systems are expected to be capable of imitating the human mind, so it will be possible to replace 
various routine and repetitive tasks of the employee by these machines. On the other hand, the 
working speed of this technology is higher than the speed of human thought, so it will encourage to 
perform tasks more efficiently, thus achieving an increase in productivity. At first, this might appear to 
be the replacement of the human being by machines when it comes to working, however, what is 
really expected is a change in the profile of the worker. Greater qualification of the worker in more 
technical aspects (i.e. engineers, specialized technicians and data analysts) and greater competences 
will be of vital importance to use artificial intelligence tools, which require greater digital and technical 
knowledge [94]. 

The fact of incorporating artificial intelligence into the activity of companies is going to open a gap 
between them [94]. Thus, it will be possible to compare those known as early-adopters and the most 
lagging. Late-adopters would tend to lag behind their closest competitors since the impact they will 
generate will be less since AI opportunities will have been previously captured by front-runners, and 
they lag behind when it comes to developing capabilities and attracting talent. In addition, companies 
that do not adapt to new developments will see their market share reduced, along with a worsening 
of the associated costs and an increase in delivery times compared to the competition [95]. 

Artificial intelligence is going to generate a great impact on the world economy, and it is going to be 
possible to perceive notorious inequalities between countries that incorporate these technologies in 
their activities and those that do not. Initially, the differences will be smaller because in the early stages 
it will be necessarily make a great economic effort associated with the costs of research and 
technological development, so the benefits will take time to be perceived in the economy of the 
countries. Later, there will be an accelerated increase in the benefits in those countries that receive 
this innovation at an early stage, opening the gap between countries even more. In addition, gains will 
be accelerated not only by technological advancement and consumption of AI, but also by increased 
data and exchange of information and knowledge with consumers, which will help to better 
understand their behaviour, preferences and needs [96]. 

The greatest economic impact associated with AI will be experimented by the United States and China, 
although the evolution will be different. These two countries together are responsible for much of the 
evolution of AI, very distant from the rest in terms of publications and patents. Although China 
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currently has a great potential in innovation and development, as can be seen in applications such as 
Baidu, Alibaba, or the fact that it won the ImageNet competition, it is a less technologically developed 
country so the impact of AI will have an effect later than in the USA. For its part, the U.S. currently 
presents the largest source of technology in the world, which is used to innovate and make their 
activity more productive, although there are great differences between sectors. One step below, a 
broad spectrum of countries, such as Germany, France, Sweden, Japan and Canada will have the 
capacity to drive AI on a large scale even though productivity growth has been slower. A third group is 
made up of countries that currently have weaker starting conditions than the aforementioned two 
groups so that the expectation of benefits from AI are more moderate. This group is made up of 
countries such as India and Italy. Finally, the last group composed of the underdeveloped countries, 
which don't have enough technological and digital resources to integrate AI into their economy due to 
its situation of poverty [95], [97]. 

6.3. AI applications in different sectors 

After a brief review of the evolution of the industry and an explanation of the impact that AI may have 
on the world, this section proceeds to present this same information among different existing sources 
of the economy. It describes the main sectors where AI has had special relevance such as the financial, 
retail, health, education, automotive and aerospace. Specifically, the most important milestones 
within each of them are highlighted, as well as the future line of action since it is a technology in 
growth. 

6.3.1. Financial 

In recent years, the presence of artificial intelligence has increased in the financial sector. This is due 
to the large amount of data generated on a daily basis and the greater calculation capacity of the 
systems [98]. In this sense, artificial intelligence techniques in this sector can provide greater benefits 
in companies where managers and directors use these techniques to gain a competitive advantage in 
the market. 

The first great advance of artificial intelligence in the financial sector was to create a system of digit 
recognition, which made it possible to speed up financial work since, for example, machines can read 
bank records autonomously, thus freeing the employee from this activity [99]. 

In addition, artificial intelligence has led to the creation of applications with more advanced functions. 
Currently, Chatbots, especially used by the "millenials", are generating a great impact within the 
financial sector [100]. A clear example of this is Charlie, from Propel or Plum, from Facebook.  These 
applications are in contact with users' bank accounts and allow them to easily know their income and 
expenditure status. In addition, artificial intelligence makes it possible to create personalized savings 
plans and provide information to users based on data provided by them [101]. 

An example of this would be the project carried out by Google Cloud and Data&Analytics of BBVA, who 
with recurrent neuronal networks have developed a model that, knowing the habitual income and 
expenses of customers, as well as their origin and destination, provides them with an estimate of their 
future income and expenses, so that they can plan their actions [101]. 

Other applications of AI within the financial sector can be the detection of fraud and money laundering 
and the automation of processes, as well as automatic payment after facial recognition of the 
customer, the latter thanks to the use of people identification and image processing [102]. 
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On the other hand, in addition to the benefits that AI can bring to financial institutions and the user, it 
can generate a great social impact since techniques are being developed and favour financial inclusion 
in vulnerable populations. Fintech companies propose alternative credit solutions for populations with 
difficult access to banks [95]. 

6.3.2. Retail 

Within the changing retail environment, it is the needs of consumers that drive their purchasing 
decisions. The main objective will be to know or estimate the evolution of these decisions in the future, 
in order to know the evolution of the sector [103].  

In retail, there are many possibilities to introduce artificial intelligence. Currently, this technology is 
used for stock control and to conduct market research, specifically consumer preferences and thus 
facilitate companies to know and anticipate consumer demand, allowing them to design products 
according to their preferences. The incorporation of AI in companies can be relevant, in the way that 
it allows to obtain a competitive advantage regarding to the rest of companies dedicated to the same 
activity [96]. 

In addition, AI also helps the consumers' buying speed, because knowing their preferences can help 
them find the product that best suits their desires and needs more quickly, as is the case with online 
shopping recommendations [104]. 

A revolutionary application in this field is Amazon's design of its Amazon Go supermarket. In it, the 
customer makes the purchase freely without going through the checkout. The payment mechanism 
will be made automatically when leaving the establishment, leaving the amount of the purchase 
registered thanks to sensors and cameras located on the local [105]. 

6.3.3. Healthcare 

In the clinical context, artificial intelligence can be used as a method to support professionals and to 
minimize diagnostic and therapeutic errors that are unavoidable in human practice [88]. In this field, 
the inclusion of artificial intelligence is really relevant, as increasing the quality of patient care depends 
directly on the speed of detection and the accuracy of diagnoses. Thus, intelligent systems make it 
possible to determine patient diagnoses or even detect pandemics and prevent their expansion [106]. 
For this, it is necessary that cognitive systems know the medical condition of patients, as well as their 
symptoms and other information that may be useful for the diagnosis such as family history, previous 
similar cases to the patient's, their demographic condition, age and more, to complete the EMR of 
each situation [107]. With all these data, the intelligent system analyses possible diagnoses, giving each 
of them a probability of occurrence, finally accepting the most likely hypothesis. 

The IA has its great application in the diagnosis by images [108] reason why it requires the use of deep 
learning and the use of CNN, as well as NLP when the data are not structured [107]. Some examples 
are laboratory reports, physical examinations and guidance notes, as natural language processing 
techniques can extract information from the text that may be relevant for diagnosis. 

As an example, for the detection of skin cancer, there are applications for Smartphones that, using 
image recognition (image classification and object detection) can determine the existence of a tumour 
after taking a photograph of a mole [109]. These applications are far-reaching and can be a social asset 
as people in remote locations with difficult access to medical care can quickly obtain a diagnosis .  
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Another example would be the creation of portable devices that offer early detection of diabetes 
thanks to integrated sensors that measure the heart rate of the carrier [110]. 

6.3.4. Education 

The application of artificial intelligence in the education sector (also known as AIED) has been a subject 
of study for decades [111]. One of the main objectives is to provide a deeper understanding of how 
learning takes place and the influence on it of other factors, such as the socio-economic and physical 
context of the person.  
Intelligent tutor systems have a series of knowledge, both of the contents and of the students, as well 
as learning methodologies that allow them to help the student, which guides them throughout the 
learning process and problem solving. Intelligent Tutoring Systems (ITS) use AI techniques to simulate 
individualized tutoring, offering the activities that best suit each learner's needs and providing 
feedback [112]. Some ITS seek to motivate students to take control of their own learning, thus hoping 
to develop their responsibility and maturity. Today's ITS use machine learning techniques, self-learning 
algorithms and neural networks to make appropriate decisions about what content provide to the 
learner [113]. 
Another alternative to these intelligent tutors is the automatic test evaluation systems [114], which in 
addition to correcting the student, allows him to know his strengths and weaknesses. Among the 
alternatives of this learning model are ToL, based on the online test [115], and CELLA, for the study of 
the English language [114]. 
Furthermore, there are other systems that allow learning, not in terms of subject matter, but in terms 
of aptitudes. This is the case of collaborative learning, which teaches and guides students to develop 
their group work skills and improve interaction between them, as could be done with DEGREE [116]. 
Another more dynamic form of learning is learning based on games [114]. With it, students are 
motivated to develop skills and knowledge, and even make students aware of issues related to society 
and citizenship, as is the case of NetAid's learning method, which aims to raise awareness about 
poverty [117]. 
In addition, part of these systems can be used both inside the classroom and outside it through the 
Internet, thus allowing continued education at any time and place. 
Another technique implemented to support learning is the use of virtual reality, which can provide 
immersion experiences that simulate certain aspects of everyday life. This function added to artificial 
intelligence, allows the user to interact and make decisions in situations that could be real, taking 
records of different behaviours. Within these experiences, they can assume different roles. For 
example, FearNot is a virtual reality system designed for schools that present environments related to 
bullying. It seeks to help people who have suffered it by giving advice on behaviours to adopt in 
different situations [118]. 
The AIEd used in classrooms has evolved, and at present the design and implementation of intelligent 
classrooms or "Smart classrooms" is being pursued. It is possible to combine cognitive systems with 
data mining techniques to track students' behaviour and their level of attention and concentration in 
class, for example, by collecting attendance data and submitting papers to identify and support 
students at risk of dropping out of school [119]. Other researchers are working on new interfaces, such 
as natural language processing, speech, gesture recognition and eye-tracking, among others, that 
could be applied to the field of education. 
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6.3.5. Automotive 

The automotive industry is one of the quicker to embrace change in technology [120]. The application 
of artificial intelligence in this area brings great benefits to society, especially in relation to a very 
important issue such as road safety and protection [121]. 

AI is also present in the automotive sector offering help to drivers. The automotive sector pursues the 
design and creation of cars that act proactively in the assistance to the driver, and even some cars are 
capable of driving completely autonomously. 

Autonomous cars need to have a large amount of data in very short periods of time to continuously 
pay attention to all possible scenarios (pedestrian crossings, signs, cyclists...) that may arise and to 
respond quickly and safely [85]. For that reason, cognitive cars have integrated GPS systems, cameras 
and sensors that allow them to capture all the information of the environment and other utilities such 
as obstacle detection and visual navigation [122]. Since the variations of the environment are very fast, 
it is necessary that the car has cognitive capacities, in other words, that it is capable of learning and 
making decisions from its own.  

Some tasks that intelligent cars are able to do is the detection of road hazards, introduced by General 
Motor in 2012 [123], or the automatic parking developed by several companies. To carry out this 
action, the car must be able to locate and delimit the parking area and, making use of sensors and 
cameras, perform the necessary manoeuvres to leave the car parked [124]. 

Another example of the application of AI in that sector is the idea of Nissan about developing a neuro 
car, which allows monitoring the driver's vital signs, such as skin temperature and brain activity, which 
can be relevant when detecting situations of stress at the steering wheel [85]. 

It is also important in this sector to pay attention to the advent of 5G networks and to the Internet of 
things. These networks, combined with the integration of AI and cloud computing, are going to bring 
about a major change in the paradigm of driving vehicles in the coming years, referred to as the 
cognitive internet of vehicles (CIoV). It is expected that the combination of all this technological 
environment will produce an improvement in transport safety based on the information gathered from 
the network and the physical space. In [125], some of the innovations that the creation of the 5G will 
produce in this sector are presented. 

6.3.6. Aerospace 

Air Traffic Management benefits for a long time of complex optimization techniques [126] that are 
strongly linked to Artificial Intelligence. Maybe the most well-known problem is the departure slot 
allocation as it impacts any passengers in any aircraft in Europe. The Network Manager Operation 
Center (NMOC, previously known as Central Flow Management Unit) plans European departures to 
avoid overloading “en-route” sectors. Barnier, [127], used constraint programming to study the slot 
allocation to respect sector capacities while Allignol [128] a decade after, considering that aircraft 
could follow a four-dimensional trajectory, proposed departure slots with conflict free trajectory using 
evolutionary algorithm [129]. 

The route network was initially created with radio-navigations beacons on the ground, heading 
towards or away from a beacon. The availability of positioning systems enabled new route deigns. The 
objective is to minimize trajectory lengths of major aircraft flows and reduce as much as possible small 
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flows, bundling techniques [130] produce graphic results while Mehadhebi [131] studied the edge and 
node positioning problem. Airspace sectorization brings additional constraints; a crossing point must 
be far away from the sector entrance to allow controller action. Adapted Voronoï diagram help to 
design airspace, taking into account those constraints and in addition to avoid overloading sectors. 
Riviere [132] applied simulated annealing algorithm to a specific route network “Sector-less”. Some 
other studies regard 3d-tubes instead of 2d-routes, which is a significantly bigger problem, Gianazza in 
[133] used a hybrid evolutionary algorithm with an A star algorithm embedded inside the mutation 
operator. Even if the airspace design is defined, according to traffic and controller’s capacity, sectors 
can be grouped and ungrouped. Gianazza, in [134] used neural network to select complexity metrics 
to predict controller workload and eventually predict airspace partitioning. 

Airports are considered as a bottleneck for air traffic. Some mechanisms, such as arrival and departure 
management (AMAN, DMAN), improve coordination with approach sectors and minimize taxi times, 
reducing the risk of congestions. Another problem is gate assignment and reassignment (in case of 
unexpected events). Among others, constraints to consider could be aircraft waiting time, passenger 
comfort (distance to luggage or connection). The authors of [135] compare different crossover 
techniques for genetic algorithm to solve the problem. Regarding environment, new technologies such 
as TaxiBot could reduce fuel consumption for taxiing, aircraft starting engine closest to the runway. 
Lancelot in [136] studied a system integrating autonomous vehicles with a multi-agent system 
approach. Gottelland in [137] simulated Charles De Gaulle airport using genetic algorithms to minimize 
taxiing time, ensuring minima separation between aircraft and at the same time respecting runway 
capabilities. 

Air traffic controllers could also greatly benefit of Artificial Intelligence to support them to make 
decisions, from conflict detection to conflict resolution. Conflict detection problem depends mainly on 
trajectory prediction whereas conflict resolution depends on conflict detection, aircraft capabilities, 
controller and pilot acceptance. Durand in [138] trained a neural network with a genetic algorithm to 
solve conflicts between two aircraft. The same genetic algorithm was used in [139] to solve every 
conflict over the French airspace on a loaded day with a centralized approach. A distributed approach 
was also studied in [140] by using an A* algorithm, solving independent conflict in parallel, and 
dependant conflict sequentially. In [141] an Ant Colony Optimization was used to solve aircraft conflict 
and dealt with large problems but not real ones. 

Artificial intelligence and cognitive computing inside cockpit are a relatively new research area. A few 
years ago, Airbus understood that cognitive computing has a role in the future of aviation. Aircraft 
manufacturers are used to record data, such as in the aircraft black box or flight recorder. But with 
cognitive computing, more data has to be recorded and stored to feed algorithms. Ronny Fehling in 
[142] acknowledged that "airbus embarked two year ago on a Big Data journey". The data storing 
methods will not be reviewed here as it is a research area by itself and not in the project objectives. 
However, such as any deep-learning method, cognitive computing requires data to learn and improve 
its behaviour. Airbus and IBM developed a cognitive approach for maintenance and with the analysis 
of aircraft sensors, current maintenance, flight operations and other data, they propose a cognitive 
aircraft health advisor. Both Airbus and IBM applied this research. After one year of collaboration with 
Airbus, Delta Air Lines has become the first costumer of the Prognostics and Risk Management 
solution. IBM implement the assistant with Korean Air fleet with its own defect database. 
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6.4. Review on ML and CC algorithms to solve AI tasks 

In this section, we expose a description of the predominant tasks of artificial intelligence, object of 
study during the last years. The evolution of these techniques is directly related to the applications 
they are intended to be useful, whether they belong to a specific sector of the economy or to a 
particular social good. A large number of the techniques that have been present up to now in AI are 
applied to issues such as improving the reconciliation of equality and the inclusion of the most 
disadvantaged people in society, as well as in education, security and justice and health and hunger 
[143]. Figure 12 shows the applicability of each of the artificial intelligence techniques to the different 
social goods, in a graphical way. 

 

Figure 12. Graphical view of AI tasks in different domains. Adaptation of McKinskey Global Institute notes [143]. 

As can be observed in the previous figure, natural language processing, image and video classification, 
object detection and deep learning applied to structured data are the tasks with more incidence in 
society. On the contrary, content generation and reinforcement learning are relatively new techniques 
with less incidence but with promising future. In the following sections, we review the current state of 
the most incident and promising techniques to solve artificial-intelligence tasks. 
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6.4.1. Image classification 

Probably the most well-known task in the computer vision field. Image classification consists on 
automatically assigning a label class to a given input image.  Before the explosion of deep learning, the 
efforts of the scientific community focused on discovering novel and effective image descriptors able 
of converting the relevant information contained in the image into a feature vector. After this step this 
encoded information was used to train a classifier in charge of identifying the objective classes. Local 
binary patterns (LBP) [144], histogram of oriented gradients (HOG) [145], scale-invariant feature 
transform (SIFT) [146], Speeded-up robust features (SURF) [147] and gabor filters [148] are only some 
examples of the most representative image descriptors proposed in the literature. In the same way, 
support vector machines (SVM) [149], random forests [150] and feed-fordward neural networks [151] 
were one of the classification algorithms with more incidence in the computer vision community to 
solve image classification tasks. 

With the arrival of convolutional neural networks (CNNs), the hand-crafted feature extraction moved 
to an automatic feature extraction by learning automatic filters. The pioneer work of Krizhevsky et al. 
[152] introduced a CNN (AlexNet) to solve the annual ImageNet Large Scale Visual Recognition 
Challenge 2012 (ILSVRC-2012). Their model achieved an error rate of 16.4% and the network consisted 
of eight layers with weights including five convolutional layers and three fully connected layers with a 
final 1000-way softmax, and three max pooling layers. After this contribution, each year in ILSVRC, 
novel CNN architectures were proposed with the aim of decreasing the classification error rate. In 
2014, Simonyan and Zisserman [153] analysed AlexNet architecture and made some modifications to 
improve the classification performance. Simonyan and Zisserman proposed receptive fields in the first 
layers of 3x3 with stride 1, much smaller than those used by their predecessors (11x11). At ILSVRC-
2014 they presented VGG16 and VGG19 and obtained first and second place in the localization and 
classification tasks. In ILSVRC-2015, Microsoft Research Team of Asia (MSRA) designed the Microsoft 
ResNet architecture based on the concept of residual learning block, which allowed them to beat 
records of detection, localization and classification. To overcome the problem of degradation in deep 
knowledge networks, He et al. [154] proposed residual mapping. Using shortcut connections, they 
obtained five residual networks whose convolutional layers are 3x3 with stride 2. Compared to VGG, 
ResNets are less complex and use fewer filters. One year later, François Chollet (author of Keras 
framework) proposed the Xception architecture [155], based on the idea that spatial correlations and 
correlations between channels are disconnected, so they can be mapped separately.  Thus, it is an 
extension of Inception architecture (proposed at ILSVRC-2014 by Szegedy et al. [156]), replacing its 
modules with depthwise separable convolutions. From this, Chollet incorporated an independent 
convolution on each input channel and then a pointwise convolution, which projects the output of the 
channels onto a new channel space. In total, the architecture has 36 convolutional layers of 3x3 and 
stride 2 structured in 14 modules that, except for the two extremes, have residual linear connections 
around them. 

The advantages and outperforming of solving computer-vision tasks through deep learning techniques 
have been demonstrated in the literature during the last decade. However, to obtain high 
performances using deep learning, large amounts of data (with the corresponding label or ground 
truth) are needed. To mitigate this requirement, transfer learning technique was proposed by Bengio 
[157] and Yosinski et al. [158]. This methodology consists in using the knowledge of models with large 
databases that have already been pretrained on other occasions, and using the weights obtained to 
train new classification models with a smaller amount of data. An example of this is ImageNet dataset, 
which has more than 14 million images belonging to 1000 different classes and whose weights 

http://www.harvis-project.eu/


EDITION 00.03.01 

 

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) 
under grant agreement No 831884. The JU receives support from the European 
Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 
JU members other than the Union 
 

58 
 

 

obtained are available to the general public. This technique makes possible to use the aforementioned 
CNN architectures to be retrained for solving specific image classification tasks.  

6.4.2. Object detection 

Object detection is the first step in scene description. This task consists in locating elements within an 
image, as well as determining which class it is part of. In this way, it is possible to differentiate into two 
types: detection of single objects and detection of multiple objects. 

Before the arrival of deep learning, object detection was based on an accurate detection of objects. 
Bounding boxes running through the image were able to generate a series of candidate regions. In 
parallel, using feature extraction and classification techniques the content of the candidate regions 
was identified to determine to the object class [159]. 

CNNs were ground-breaking in this task. Girshick et al. [160] treated each region as a convolutional 
neural network (R-CNN) to obtain a fixed-length vector from each, which will be input into support 
vector machines (SVM) to classify the object. Wang et al. [161] presented a similar approach based on 
proposals of object regions called regionlets, which use features such as local binary patterns, gradient 
dense histogram, shallow CNN and covariance among others to discern the type of object. A different 
approach is to use multi-scale deformable part model (DPM) instead of proposing search regions 
within the image. Ouyang et al. [162] proposed DeepID-Net, where deformable CNNs are used by 
adding a def-pooling layer to model the deformation of parts of the object. Regarding to the 
recognition of fine-grained objects, their classification is more difficult because the differences 
between categories are much subtler. For this reason, Huang et al. [163] proposed a progressive 
location of pieces, in which they combined the part of detection of pieces and the part of classification 
of objects together. Then, it would be progressively refined with a SPP-Net pooling layer, which makes 
it possible to identify more distinctive features that help to obtain a better classification of the object. 
DeepMultiBox [164], trained with ImageNet, follows an approach based on prominent objects in an 
image, where prominent parts of objects are detected by removing the image background. Overfeat 
[165], is a hybrid model that combines salienciality and multi-scale models, which performs 
classification, localization and detection simultaneously on the same shared network. In the Markov 
random field model proposed in [166], an iterative sequential location is used to position and 
punctuate the bounding box. A multiscale volume model is created, resulting from the combination of 
context modelling and multiscale structure for object detection and location. 

The last advances in object detection by using deep-learning techniques allows to reduce 
computational time in order to perform real-time object detection (i.e. object tracking). In particular, 
Girshick et al [167] added a new pooling layer to the R-CNN to locate the region of interest (RoI) which 
allowed it to significantly improve the speed of training and testing without a major impact on 
accuracy. In addition, a network of fully convolutional proposed regions [168]was added to determine 
the class to which the object belongs while detecting where it is located. This type of network is known 
as Faster-R-CNN. The fact of being able to detect objects at high speeds, allows the recognition of 
multiple objects in real time. The YOLO (You Only Look Once) technique [169] is the most used for this 
purpose. In YOLO, the object detection problem is modelled as a regression problem. In this case, 
instead of iteratively browsing the image by searching regions and evaluating probabilities, the image 
is scanned only once throughout the training and testing processes and from there the information is 
inferred, saving a lot of computational cost. 
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6.4.3. Content generation 

Deep learning models usually require a large amount of data to work properly. However, it is usually 
common not to have all the necessary data. For this reason, generative models arise, capable of being 
trained with missing data. These models can understand the essence of the data and estimate the 
distribution that best represents it, in order to be able to generate new samples if desired [170]. 

For the implementation of generative models, the most representative networks are known as GAN, 
Generative Adversial Nets, which have experienced great growth since they were proposed in 2014 
[171]. In this first proposal, Goodfellow et al. developed a generative model based on the simultaneous 
training of two models, one of them generative and the other discriminative, the latter in charge of 
studying the probability that one sample comes from the generative model or from the real training 
set. The generative model does not have any direct contact with the real samples, but instead knows 
them from the interaction with the discriminator. Then, Goodfellow made a tutorial where he explains 
how a GAN work and the advantages and disadvantages of working with GANs instead other models 
[172]. The GAN can be used in a wide range of applications within the field of computer vision such as 
object detection [173], image captioning [174], and natural language processing [175]–[177] (although 
it has some limitations [175]) and even for image editing [178], among others. 

The first GAN [171], consisted of a fully connected neural network, applicable to simple images and 
databases such as CIFAR10 and MNIST. Later, other alternatives where proposed like fully 
convolutional neural networks. In [179], Randford et al. proposed a deep convolutional GAN (DCGAN) 
for both, generator and discriminator, which pleasantly perform unsupervised learning. This type of 
networks represented a great advance in the generation of images. In this same document, they 
demonstrated that the performance of the discriminator is superior if Leaky RELU is applied as 
activation functions between the intermediate layers of the discriminator. In case of having samples 
represented in 3D, Wu et al. [180] incorporated volumetric convolutions to the GAN, and that it is 
useful for learning in both 2D and 3D images. In the 2D framework, Mirza et al. [181] presented a 
conditional version of the GAN, conditioning the generator and discriminator network, offering a 
better representation for multi-mode data generation. Originally, GANs cannot map a data in a latent 
space vector, also called inference. To make this possible, Dumoulin et al. [182] presented an adverse 
inference model that learns together with the generation network, so that it assigns variables from 
latent space to the data and the first, data samples to the latent space, producing a discriminatory 
network with an encoder that learns from the inference network. 

After completing GAN training, the neural network can be reused for later tasks. For example, the 
outputs of the convolutional discriminator layers can be used as a feature extractor, exercising the 
classification function in semi-supervised learning, as proposed by Salimans et al. [183]. Another 
example of a classifier is the one proposed in [179]. Randford et al. used the GANs as a feature 
extractor for the classification of the CIFAR-10 database; at the exit of the maxpooling layer they had 
a 4x4 spatial grid that becomes a vector after passing through the flatten and concatenation phase. 
This vector is introduced into a regularized linear L2-SVM to proceed with classification. One of the 
drawbacks of working with synthetic data is the limitation of generalizing to all real images. In an 
attempt to address this issue, Bousmails et al. [184] proposed an unsupervised GAN model that adapts 
the images of the source domain (its pixels) so that they appear to be extracted from the destination 
domain, thus achieving generalization. 

In addition, GANs can also be used to refine synthetic images. Shrivastava et al. [185] proposed a 
simulated and unsupervised learning with unlabelled real data and preserving the annotation 
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information of the simulator, using synthetic images as inputs. As a result, they got a simulator capable 
of estimating gaze and pose. In terms of image generation, we should mention the model proposed by 
Denton et al. [186], which used a cascade of convolutional networks (convnets) within a pyramidal 
Laplacian network, also extending the conditional version of the GANs. This allowed them to present 
a model where high-quality images of natural pictures are produced from samples of CIFAR10, STL10 
and LSUN. Finally, for high resolution images, Leding et al. [187] proposed a super-resolution GAN 
(SRGAN). In it, a perceptual loss function is added, consisting of loss of content and adverse loss. This 
was the first network that allows inferring photo-realistic images, performing a 4x scale magnification 
factor. 

6.4.4. Image and video captioning 

In a completely digital age such as the present, videos or sequences of images make up a rich and 
complex source of information. For most human beings, visualizing a short video or scene and 
describing what happens in it using words is a very simple task. In the case of machines, extracting 
visual information from the pixels of a video and automatically generating a descriptive phrase is a 
highly complex problem. 

However, computer-vision techniques are currently gaining great relevance in a multitude of scenarios. 
The transfer of visual information to a machine, with the objective that it will be capable of imitating 
certain cognitive processes of the human being, gives these techniques a high applicability in countless 
fields. One of the fields covered by computer-vision techniques is known as Image & video captioning. 
This name defines the process of automatically transferring the information contained in an image or 
a sequence of images to a phrase in natural language, i.e. any language understandable by humans. 

The ability to describe videos automatically is susceptible to numerous relevant applications such as 
the classification of images and/or videos based on their content, the textual summary of image 
sequences for the advertising field, or video surveillance among many others. 

The core of automatic video description consists of three clearly differentiated major stages: object 
recognition, activity recognition, and surface realization. The first works focused on the description of 
data using natural language focused their efforts on the static image [188]–[191]. These works are 
based on various algorithms and techniques for the recognition of objects in images and the generation 
of textual sentences from simple templates. These methods were extended to video description in 
[192]–[197]. They carry out the description of environments in very specific domains (e.g. kitchen, 
school, etc.) covering in a very limited way the vocabularies and activities of each specific domain and 
without the capacity to generalize. The progress of the technique Image & video captioning with 
capacity of generalization, indistinctly of the domain in which the content to describe is based (open-
domain videos), is limited by the great number of existing vocabularies and by the scarcity of annotated 
data (videos with their respective textual descriptions). The first works in which a description of a small 
set of open-domain videos was presented were proposed by [198]–[200]. In these works, the 
techniques of visual recognition from the frames of the video are combined with linguistic knowledge. 
More specifically, different classifiers are trained to identify hundreds of objects, activities and scenes 
individually. Subsequently, making use of the classification probability together with knowledge 
extracted from a linguistic corpus, the best prediction subject-verb-object-scene is estimated. 

The development of deep learning and recurrent neural networks led to a noticeable increase in work 
on static image description using natural language, achieving excellent results [201]–[208]. However, 
video description has not been the object of so much research and only some works can be found in 
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relation to the technique of video captioning through deep neural networks. More specifically, in 
[209]the authors propose the use of a CNN, to extract visual information from the frames of a video, 
concatenated with an RNN based on Long Short Term Memory (LSTM) units capable of learning to 
describe sequences of images. Due to the great limitation of annotated videos, that is, the scarcity of 
videos with their corresponding descriptive sentence, the authors of [209] propose a training based 
on image-description pairs for learning. Later, making use of transfer learning techniques and 
databases for video captioning (video-description couples) give the automatic models the ability to 
describe sequences of images. Based on this work, Venugopalan et al. modified the design of the 
network architecture in [210], in order to capture the existing dependencies in a sequence of images 
and in the corresponding sequence of words that make up the descriptive phrase. Finally, this system 
includes linguistic knowledge to improve both the grammatical and descriptive quality of the videos 
[211]. 

6.4.5. Emotion recognition 

In recent years, facial recognition of emotions is gaining importance given the influence it has on 
communication and interaction between people, as well as in other applications such as virtual reality 
[212] and driving assistance systems [213], where artificial intelligence is a key tool for its realization.  
 
Generally, facial emotion recognition (FER) is performed in three phases [214]. The first consists of 
detecting the face and marking its reference points (mainly eyebrows, nose and mouth), then proceeds 
to the extraction of features and ends by classifying the expression of the person. Additionally, it is 
necessary to add a distinction between static images and temporal sequences (video) since the latter 
have to include a space-time component that detects the different expressions throughout the 
sequence, creating a dynamic variable that stores the displacement between landmarks when the 
images pass [215], [216]. 
 
Before the arrival of deep learning, various methods have been used for the recognition of emotions. 
The difference between them is the type of features extracted from the face. On the one hand, there 
exist a bulk of works in which the authors construct the training vector with geometric variables. As 
can be seen in [217], Ghimire and Lee used the position of landmarks points and the angle formed 
between them to determine variations between these positions in different images of a sequence, 
creating training vectors and then classify the facial expression using a SVM classifier or multi-class 
AdaBoost, comparing it with the prototype facial expression. On the other hand, there exist another 
work stream based on the extraction of appearance features from several facial regions. To detect 
which regions are important, Ghimire et al. [218] used an incremental search algorithm; while Happy 
et al. [219] created the characteristics vector with a local binary pattern histogram of several blocks of 
a facial region to later proceed to their classification. 
 
With the introduction of deep learning, the use of convolutional neural networks (CNN) is the most 
common solution for this task [220]. Jung et al. [221] applied this technique for the recognition of FE 
in images. For this purpose, they used a CNN with facial geometric properties and another CNN with 
appearance features, obtaining the FER of seven different emotions with the combination of both 
networks, using the CK+  and MMI  databases in their training. Additionally, Zhao et al. [222] proposed 
a layer capable of inducing facial regions with relevant information using feed-forward as a recognition 
algorithm, and which they called deep region and multi-label learning (DRML). 
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The aforementioned methods were proposed for static image and they do not allow facial recognition 
of emotions in a video sequence. For this purpose, recurrent neural network with long and short term 
memory units, known as LSTM, is used. This kind of neural network is capable of storing information 
of the temporal variable, which is combined with the spatial features recognized by CNNs. In the 
EmotiW Challenge of 2015, a contest for the recognition of emotions in nature, specializing in facial 
expressions, Kahou et al. [223] presented a hybrid model of analysis of seven emotions that combines 
CNN with RNN performing temporal averages of aggregation. As a result, they obtained better 
recognition results than those previously proposed without RNN. 

6.4.6. Reinforcement learning 

Reinforcement learning (RL) is a technique in which the intelligent system learns to behave from the 
sampling and explotation of its environment and uses what it learns to find better ways through trial 
and error procedures. The system does not have information about which action will be the next one 
but after performing a series of actions, it will receive certain rewards, and since its objective is to 
maximize these rewards, it will learn to choose the following actions thanks to the best previous 
rewards, obtained from trial and error [224]. 

In the literature there are also references to the RL as the search for balance between exploration and 
exploitation because the device has to prefer past actions that it knows produce great rewards 
(exploitation), but it also has to test new actions that are unknown (exploration) to see if they are 
rewarding or not [225]. 

Traditionally this methodology has been very useful especially in game agents, whether video games 
or board games. Specifically, Mnih et al. [226], applied convolutional neural networks to Atari games 
in the Arcade Learning environment. Their model consists of a variant of Q-learning from which is 
obtained the function of estimated rewards from rows of unprocessed input pixels. 

For board games, Go is the most investigated with artificial intelligence because the board offers a 
great variety of possible movements. In this context, RL is perhaps the most exploited alternative given 
the reward function that the system receives. Silver et al. [89], proposed a different approach to this 
game using deep neural networks in which they combined reinforcement learning of single-player 
games along with supervised learning from expert human play, given rise to the famous AlphaGo, the 
first intelligent agent that beat the best human Go player at the time. 

In other different areas, the reward function is more difficult to obtain given the difficulty of raising all 
possible scenarios, as well as leaving the system to experiment based on proof of error in all of them. 
This is the case of medicine and driving, where no errors are allowed. Specifically, in the case of 
medicine it is necessary for agents to make use of off-policy evaluation, which consists in learning from 
a collection of historical data. This technique can be put into practice using Q-learning for the 
implementation of Reinforcement learning algorithms [227]. However, other authors, such as 
Gottesman et al. [228], point out that using off-policy evaluation to learn the correct policy can be 
difficult, so the data must be treated with finesse since, for example, there are collections of data taken 
from patients medicated with a certain drug, but not from patients not treated with it. 

In other areas such as driving, Abbeel et al. [229] proposed a model which they called "Inverse 
reinforcement learning". The main idea arises from the difficulty of contemplating all possible 
scenarios, so instead of giving the system its own reward function, it is pretended that the system 
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learns from the observation of an expert performing the same task, and thereby extracting the reward 
function. 

6.4.7. Natural Language Processing 

Natural language processing is present in a variety of applications of everyday life, such as automatic 
correction, suggestions to answer emails, machine translation and voice recognition among many 
others.  

One of the first models designed for natural language processing was developed in 2001 by Bengio et 
al. [230], known as the neural language model. The mission of this model was very simple; from a series 
of given words, the model had to predict the next word, using a neural network with feed-forward 
connections. The preceding words represented in vector form (word incrustations) were concatenated 
and introduced into a hidden layer connected to a subsequent softmax layer. 

Language modelling is defined as predictive learning and it is at the core of many later developments, 
including sequence by sequence models, word inlays or pre-learned language models among many 
others [231]. In order to achieve a total understanding of natural language, it is not enough to learn 
from the elementary form of the text, but it is necessary to apply new methods. 

A way to make language learning faster is to train the models to perform multiple tasks, linking the 
weights obtained in the different layers of the network. This concept called multitask learning (MTL) 
was first proposed in 1993 by Rich Caruana [232], under the idea that working with isolated tasks is 
neglecting the inductive bias inherent in similar tasks so that the use of multiple tasks would obtain a 
source of inductive bias between them. This fact speeds up the learning process and allows more 
complex tasks to be carried out. In the NLP environment, MTL was not applied until 2008 by Wetson 
and Collobert [233], who designed a convolutional neuronal architecture trained with weight sharing, 
a specific type of MTL with semi-supervised learning.  Multi-task learning is currently employed in a 
multitude of NLP tasks and, as models are evaluated, it gains more prominence, with specific reference 
points for this type of learning having recently been proposed [234]. 
 
In 2013, Mikolov et al. proposed in [235] two new architectures for calculating more efficient 
continuous vector representations of words from large data sets, removing the hidden network layer 
and approximating the target. This change along with the implementation of word2vec, increased the 
word embedding capacity. Word2vec, allows predicting a central word from surrounding words 
(CBOW) or capturing a large number of syntactic and semantic inter-word relationships providing great 
quality to the prediction (skip-gram) [236]. The broad training of these networks allows them to find 
linear relationships between words by attending, for example, to their verbal tense or gender [237], 
[238]. Later, in [239] Bolukbasi et al. began to perform incrustations of words pre-learned as initializers, 
under the idea that the widespread use of word incrustations may amplify the bias of the data and 
thus improve the performance of the rest of the tasks. The vector representations provided by 
word2vec can also be learned by matrix factorization, such as SVD and LSA [240]; however, word2vec 
remains a popular and widely used option today. These word embeddings can also be done with terms 
from different languages, as transfer between different languages is allowed. This feature is widely 
used in unsupervised machine translation applications [241], [242].  
Convolutional neural networks are widely used in NLP. The representative work of Kalchbrenner et al. 
[243] described a dynamic CNN with a layer of dynamic k-Max pooling applied to linear sequences, and 
where the lengths of the input phrases are different. In the text area, CNNs only work in two 
dimensions and filters only work in the temporal dimension. Both RNN and CNN model language as 
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sequences from left to right, although linguistically the language is hierarchical, that is, the text is made 
up of phrases, which is also made up of words. For this reason, appear recursive neural networks [244], 
hierarchized from bottom to top like a tree. 
 
In 2014, sequence by sequence learning was proposed, by the hand of Sutskever et al [245]. For its 
implementation, a neural network (usually RNN) is required to act as an encoder, treating each 
sentence symbol by symbol and converting it into a vector so that, at the output, another neural 
network (usually also RNN) decodes and predicts the symbol at the output. This is the technique used 
in natural language generation tasks, as well as in machine translation. Its main limitation is that it is 
required to compress the entire content of the sequence in a vector of fixed size. In order to avoid this, 
attention appears [246], which allows the decoder to look at the hidden states of the source sequence, 
and thus provide an additional input to the decoder, which will be the weighted average of these 
hidden states. This technique also allows, among other things, to obtain words within a given context 
so it is common to find it in reading comprehension [247], although it is especially adopted by the 
Neural Machine Translation (NMT) [248]. Afterwards, models appeared with explicit memory capable 
of retaining information for longer periods of time and in which it can be read and written. These 
memories do not depend on the hidden states of the past but on the present state. Examples of such 
models may include Memory Networks [249] end-to-end memory networks, neural Turing machines, 
and neural differentiable computer [250]. Note that in 2017 and 2018, various supervised tasks have 
been used to pre-train neural networks [251] although, when it comes to linguistic models, pre-
configured word embeddings are only used in the first layer. Language model inlays can be added as 
features to other models, thus providing an improvement in many different tasks [252], especially 
when little data is available for training. 

6.4.8. Sentiment Analysis 

Sentiment analysis consists in extracting subjective information from text or spoken language, 
identifying feelings, emotions and opinions [253]. It is common to use it in used in various applications 
covering from business purposes to applications oriented in human behaviour understanding [254]. 

Focusing on text analysis, it is necessary to determine the polarity of the text before classifying a 
sentiment present in a writing, which can be positive, negative or neutral. For this reason, this practice 
is also known as opinion mining [255]. SA can be divided into three levels depending on the fragment 
of text analysed. Firstly, there is the document level, where the global text will be classified according 
to its polarity [256]. If this classification is done in sentences, we would be at the sentence level [257], 
which distinguishes between objective and subjective sentences. And finally, for a fine-grained analysis 
we would be at the aspect level centred on the type of language used [258]. 

Sentiment analysis requires the use of natural language processing techniques, structured and 
unstructured data mining, retrieval information and other computational and text analysis techniques. 
[259]. For the classification of feelings, the information in the overall text should be reflected in smaller 
representations like phrases and words. At the beginning, the word bag model (BoW) [260] was used, 
which converts a text into a fixed-length vector, a technique also used in NLP. However, BoW ignores 
the order of the words and their semantic characteristics, so in some research it has been replaced by 
word embedding techniques. From that vectors, it is now possible to establish a SA classification based 
on three approaches [255]: lexicon based, which assumes that the collective polarity of a sentence or 
document is the sum of the polarities of the individual phrases or words, machine learning and hybrid 
approaches that combine the previous two. 
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In 2002, Pang and Lee [261] were pioneers in applying the area of sentiment analysis. The activity is 
based on classifying binary sentiments from film reviews, for which they also applied maximum 
entropy (ME), naïve bayes (NB) and SVM techniques. These techniques continued to be used in other 
investigations reaching different levels of precision, as can be observed in [262], [263]. Dang et al. [264] 
used SVM for classification, using Gain of Information (GI) to select characteristics and thus increasing 
the effectiveness of the model. McDonald et al. [265] based their work on classifying the text at 
different levels of granularity, specifically at the document and sentence levels. They considered both 
levels and the interdependence between them, because the classification of one level influences the 
other. They used classification techniques ensuring that the solutions were consistent, for which they 
applied Viterbi programming that allowed them to reduce the classification error. Moraes et al. [266] 
performed for the first time an empirical comparison between SVM and artificial neural networks, 
proving that, except for the case of unbalanced data, the ANN classification results were equal to or 
superior to those of SVM. 

In the case of unsupervised learning, Le and Mikolov [236] proposed a paragraph vector that learns 
from the characteristics of fixed-length vectors, predicting the surrounding words present in texts of 
variable length, whether complete documents, paragraphs or sentences. Ghiassi et al. [267] 
incorporated a supervised reduction of n-grams characteristics, which reduced the complexity of the 
model and improved the precision of the classification carried out with SVM. Later, they used the 
automatic learning algorithm DAN2 (dynamic artificial neural network) for the classification, thus 
giving a greater precision to the model than that obtained with SVM. 

A model based on CNNs was proposed in [260] by Zhang et al. which uses convolution layers to perform 
the conversion of the fixed-length vector (BoW). For the analysis of sentiments at the aspect level, 
Ruder et al. [268] worked with word embeddings and incorporated a bi-directional short-term memory 
to enhance relationships between the sentences themselves and with the rest of the sentences.  Yang 
et al. [269] proposed a model that made use of attention at both the word level and the sentence level, 
which made it possible to adapt the level of attention given to individual words or phrases when 
predicting. 

6.5. Cognitive computing and expert systems 

The term cognitive systems arises in 1990, considered as an evolution of artificial intelligence, whose 
contribution lies in teaching computers to imitate the way the human mind works and to be able to 
learn from experience, instead of being merely an artificial system [85].  

Cognitive systems, therefore, require a high level of natural language processing so that they can 
semantically understand the information provided by the environment around them and be capable 
of storing and processing a large amount of data from several sources [270], in order to be able to 
respond to multiple scenarios. Moreover, as the information and variables they demand are 
continually changing over time, they require their learning to be adaptive to suit each situation [271]. 

For this purpose, intelligent computers are equipped with advanced navigation, detection and 
visualization systems that allow them to act in a proactive way, thus favouring human-computer 
iteration, helping humans in a great variety of applications of daily life. Cognitive computing can 
contribute in the same way to the increase of productivity since on one side it offers assistance to 
people to carry out their tasks more efficiently, while on the other side they can reach a thought speed 
even higher than the speed of the human mind. 
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There are four techniques for making these measurements. One of them consists of that the subject 
evaluates his or her own performance with feedback from the ratings given. Another type of 
measurement is task-based, which evaluates the performance of the subject in each task performed.  
To these two are added analytical techniques that determine specific aspects of human performance 
with empirical data; and psychophysiological measures, which use senses to measure empirical data 
from the subjects [16]. 

Analytical models are used to model and simulate the first stages of the design, before moving into 
the human in the loop phase. By taking the required measurements in that phase, both of the system 
and of the human, these are used to improve the analytical model, completing a cycle. In Figure 13, 
this cycle can be visualized with the measurements made in each phase.  

 

 

 

 

 

 

 

 

 

A large number of applications can be found for these cognitive systems and in multiple activity 
sectors, most of them focused on helping human beings.  

One application is the cognitive camera, whose objective is to replicate human vision to, for example, 
introduce them into vehicles and help them park and even send a warning signal to the distracted 
driver who does not pay attention to the road [272], [273]. 

In the area of the industry, and production in general, providing cognitive capabilities to current 
systems can help to deal with the problem of changing market demand and the control of quality and 
cost of products, or even responding to growing personalized demand [274], [275]. In addition, these 
systems can also be incorporated into materials, so that both engineers and consumers are aware of 
the state of their properties and cognitive capabilities, in other words, of how the material "feels" 
[276]. 

Another application in which the research is being carried out is the creation of robots with cognitive 
brains and consequently greater autonomy than the current ones, which can act as human’s co-
workers [277]. 

In the automotive sector, cognitive cars are also relevant. These incorporate sensors such as voice 
recognition, cameras and navigation devices that provide continuous information to the car and 
encourage it to think like the human who drives it, and thus be able to help him. The main reason for 
the development of these cars is the protection of all passengers, as well as road safety in general. For 

Figure 13. Interactions between the different human performance assessment 
techniques [16].  
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this reason, there are also autonomous cars with cognitive capabilities, which are able to make 
decisions autonomously at any moment [125], [278]. 

Cognitive computing is also useful in the field of aviation, since it can contribute to improve and make 
early detection, assessment and decisions in complex situations, whether due to the conditions of the 
environment through which aircraft and air traffic circulate or due to the management of the system's 
faults, and even those coming from humans; encouraging greater air safety [279], [280]. 
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7. Adaptive/Cognitive HMI 

7.1. General Review 

The Human-Machine System (HMS) has three components; in the field of cockpit a human operator 
(the pilot), a machine (the aircraft) and the interface that allows them to communicate. The interface 
is traditionally the means through which the humans interact with the machine. The HMS describes 
the combination of the human and the machine. With the advance of computing technologies, the 
capabilities of modern aircraft have significantly increased during the past decades. 

HMS can be passive or active. Passive HMS limit human interaction with the machine and usually 
involves conventional human machine interfaces (HMI). Active HMS means that the machine is 
designed to provide intelligent and adaptive assistance. An intelligent adaptive system (IAS) in the 
cockpit will promote the interaction between human and machine to achieve a ‘common goal’ similar 
to what happens between a pilot and a co-pilot. 

7.2. Cockpit Assistants  

Assistive technologies are already interacting with the pilots (pilot and co-pilot) in order to increase 
the safety of the flight and improving the overall conduct of the machine.  

 

 

 

 

 

 

 

Systems like flight director (FD cf. Figure 14) which guide the pilot, flight management system (FMS cf. 
Figure 15) enable the aircraft to fly itself most of the time, safety nets like GPWS (ground proximity 
warning system), TCAS (traffic collision avoidance system cf. Figure 16) can help pilots to detect and 
avoid a ground or aircraft collision. For instance, the TCAS offers traffic detection alerts (TA) in the 
vicinity of the aircraft but also proposes resolution advisories (RA) (change of altitude) whenever there 
is a collision risk. These TA and RA are being said aloud (‘traffic traffic’ ‘climb climb’) by the TCAS system 
like a human could do. 

Figure 14. Flight Director 
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Figure 15. Flight Management System 

 

 

Figure 16. TCAS Traffic Alert and Resolution Advisory 

Voice or audio enhanced systems are numerous in the cockpit, GPWS, TCAS, wind shear warning, flight 
envelope protection. 

7.3. Adaptable, intelligent and adaptive HMI 

HMI is all the means by which humans interact with the HMS, it is a part of the HMS. HMI can cover a 
screen a keyboard, a mouse. In the case of a glass cockpit, FCU, MCDU, PFD, ND, yoke are part of the 
HMI. There are multiple ways to design an HMI, usually a task model of actions performed by an 
operator is being used. This task model will help to define how the machine will support the human to 
achieve goals associated to the task. This approach is technology centred and more focused on the 
machine than the human.  

Adaptive and intelligent HMI not only focus on task model but also on user model. That is to say that, 
understanding human abilities and limitations, the HMS designer will try to build an effective HMI that 
will improve the assistance provided to the operator. An intelligent interface can be defined as "an 
interface where the appearance, function or content of the interface can be changed by the interface 
itself in response to user's interaction" [281]. This assumption means that the adaptation and the 
reason why it occurs is embedded in the HMS design. Adaptive HMI purpose is slightly different than 
intelligent HMI. Tomlinson, Baumer & al. [282] propose this definition "Adaptive interfaces are 
interfaces that seek to predict what sorts of features would be desirable". It means that the layout of 
the HMI could be changed dynamically according to those predictions. Adaptable HMIs are 
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customizable by the user before or during activity. Several studies show that adaptive HMIs may hinder 
the interaction and users are more comfortable with static and adaptable HMIs [283]–[285].  
Intelligent and adaptive HMI are both based on a user centric design approach. 

In order to build and maintaining a good situation awareness (SA) - SA is defined as ‘the perception of 
the elements in the environment within a volume of space and time, the comprehension of their 
meaning, the projection of their status into the near future and the prediction of how various actions 
will affect the fulfilment of one’s goal’ [286] - a cognitive engineering approach lead several team to 
develop cognitive assistance systems (CAS) for the cockpit. A CAS takes into account the limitations of 
humans to optimize information presentation and automation during task. It needs to ‘understand’ 
the situation as humans do and know the state of the user to prevent SA enemies. Augmented 
cognition (interdisciplinary field with hci psychology ergonomics and neurosciences) and neuro-
ergonomics (application of neurosciences to ergonomics) emerged in the early 2000. 

In the cockpit, CAS have been developed since 1999 with CASSY (Cognitive ASsistant SYstem) and 
COGPIT (COGnitive cockPIT [287]). The latter has been studied by the DERA (United Kingdom Defence 
Evaluation and Research Agency), they describe a level of automation taxonomy the Pilot 
Authorization and Control of Tasks (PACT) and their cognitive cockpit systems for military aircraft. 
COGPIT has three main functional modules, COGMON (cognition monitor), SASS (situation assessor), 
TIM (tasking interface manager). COGMON is based on real time analysis of psycho-physiological and 
behavioural states of the pilot (workload, arousal). SASS provides information related to real time 
analysis of the mission and support decision making. TIM takes information coming from COGMON 
and SASS in order to optimize the means by which information is communicated to the pilot.  

Recent work at ISAE-SUPAERO has been done on the topic using eye tracking in the cockpit to detect 
the ‘non-perception’ of relevant information in real time. 

Some consideration related to the implementation of CHMI is addressed in [279], where a tentative 
layout is proposed (see Figure 17). The system comprises 3 major systems: Human performance 
module, task management module and adaption engine. The objective of Human Performance 
Module is to assess the human operator using specific human performance models in order to 
estimate human performance and cognitive states. There exit four broad techniques for assessing 
human performance: Subjective assessments, task-based metrics, analytical techniques and psycho-
physiological measures. On the other hand, the Task Management Module monitors the external 
environment and on-board systems parameters, prioritizing and tracking the progress of current tasks, 
as well as planning and schedule future tasks. And the Adaptation Engine receive inputs from the 
modules mentioned before and reconfigures de HMI according to a set of decision logics stored in 
decisions tables. 
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Figure 17: General layout of adaptive HMI in [279].  

Other researches such as [16] proposes a more detailed architecture for the implementation of this 
CHMI. “The CHMI utilises psycho-physiological sensors, which are integrated into the flight deck, to 
monitor the pilot in real-time. Cognition models are used to assess the pilot’s cognitive states, such as 
fatigue, stress, attention and mental workload based on the physiological data collected. Important 
physiological indicators include brain (e.g., blood oxygenation levels), cardiac (e.g., Heart Rate (HR), 
Heart Rate Variability (HRV)) and eye (e.g., blink rate, eye movements and pupil diameter) activity. 
Brain activity provides information on cognitive workload and can be tracked either electrically (via 
electroencephalography (EEG)) or optically (via functional near-infrared (fNIR) spectroscopy). Cardiac 
activity can be measured with wearable devices such as wristbands or smart shirts and is utilised to 
assess stress and workload of the pilot. Eye activity can be tracked remotely with multi-camera systems 
and is also a good indicator of workload – blink rates and duration are inversely correlated and 
decrease with increasing workload [288]. Additionally, pilot attention can be modelled from gaze 
patterns, which are correlated with information sampling [289].  

An inference engine is used to manage task distribution between the automation systems (e.g., NG-
FMS) and human operators (air- and ground-based) based on the external environment and their 
cognitive state. If a high single-pilot workload is assessed, the CHMI provides support by suggesting a 
transition to higher levels of system automation, reduces screen clutter, and/or transferring non-
critical tasks to the ground crew. On the other hand, if the system infers that the pilot is losing 
situational awareness at a high level of automation, the CHMI either suggests a more suitable level of 
automation or triggers appropriate alerts to keep the pilot in the loop. Adaptive alerting is designed to 
provide cues that complement the cognitive state of the pilot, based on the system’s assessment of 
the situation. Alerts are prioritised and are provided through a combination of visual, auditory and 
haptic feedback; multi-sensory feedback increases the pilot’s perceptual bandwidth with more 
channels to process information.” [16] Figure 18 illustrates the architecture of the CHMI.  
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Figure 18. Cognitive HMI architecture [16]. 
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8. Virtual Pilot Assistant architecture 

Most of the reviewed literature agrees that for the SPO it is necessary the implementation of a VPA. 
Figure 19 shows the proposal of [16], in which highlights 4 major systems: communications, 
surveillance, flight management / control and Human Machine Interfaces (HMI) systems. 

“The communications system enables data-sharing between the single-pilot, GO, AOCO and ATCo via 
a network comprising various RLOS and BRLOS data links. In case of emergency, a reliable, secure high-
speed command and control (C2) link enables the GO to assume direct control of the aircraft’s flight 
management and control systems. The surveillance system utilises an Airborne Surveillance and 
Separation Assurance Processing (ASSAP) subsystem, which is integrated into the flight management 
system, to provide automated Separation Assurance and Collision Avoidance (SA&CA) capabilities. The 
NG-FMS is interlinked to the Flight Control Unit (FCU), autopilot and Flight Control System (FCS) to 
provide guidance, navigation and control, as well as trajectory optimisation, planning, negotiation and 
validation functions. An Integrated Vehicle Health Management (IVHM) subsystem automates the 
management and monitoring of aircraft systems, providing appropriate updates, warnings or alerts to 
the pilot (via a cognitive HMI) and the ground crew.” [16] These concepts will be described in the 
following subsections. 
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Figure 19. VPA system architecture [16]. 

8.1. Communications 

“Depending on the criticality of information being transferred, different links (with different Required 
Communication Performance levels) are used to support transfer of data and information between the 
aircraft and various ground agents. The European Organization for Civil Aviation Equipment (EUROCAE) 
Working Group 73 (WG-73) has developed a methodology for determining the Required 
Communications Performance (RCP) for RPAS  [290] , based on ICAO’s Manual on RCP (Doc 9869) and 
RPAS (Doc 10019). A similar framework is used to define the Command, Control and Communications 
(C3) links for SPO for this section. These comprise safety critical, non-safety critical and real-time C2 
links, as well as links for ATC and ground crew voice/data communications (Figure 20).” [16]. 
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Figure 20. Command, Control and Communications (C3) links VPA system architecture [16]. 

 “The communication links may be within RLOS or BRLOS as depicted in Figure 21. Ground-to-ground 
links between the ground crew and the ATC provide lower latency and higher reliability than air-to-
ground radio links, supporting some information exchange in instances when specific air-to-ground C3 
links suffer from degradation for example due to weather, terrain or signal obstruction.” [16]. 

 

 

Figure 21. SPO Communications Network [16]. 

 “Evaluating SPO RCP requires consideration of the operational risk in the event of a loss-link. The 
following factors will affect operational risk: increase in single-pilot workload, information carried by 
the link, level of autonomous operation, population density in area of operations and SPO operating 
airspace class. The RCP values for RPAS operations as proposed by WG-73, which are more stringent 
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than manned operations, are shown in the Table 4 [290] . The RCP is defined by the separation 
between the aircraft and the ground station, as well as the link transaction time. Limits are set for the 
link continuity (lower transaction time than required time specified by the RCP type), availability (ratio 
of actual to specified operating time) and integrity (probability of undetected errors in transaction).” 
[16]. 

Table 4: RCP for RPAS, from EUROCAE WG-73 

RCP Type 
Separation 

(NM) 

Transaction 

time (sec) 

Continuity 

(probability/ 

flight hour) 

Availability 

(probability/ 

flight hour) 

Integrity 

(acceptable 

rate/ flight 

hour) 

RCP 10  

Tactical control; 

Continental Europe  

5  10  0.99985  0.999997  1.43x10-6  

RCP 60  

Routine comms; 

Continental Europe  

5  60  0.99985  0.99999  1.43x10-6  

RCP 120  15  120  0.99985  0.99999  1.43x10-6  

RCP 240 / RCP 400  

Oceanic  

30 / 50  240 / 400  0.99985  0.99999 / 

0.99988  

1.43x10-6  

 

8.2. Surveillance 

“On-board surveillance systems provide a combination of surveillance and surveillance-based guidance 
(through interfacing with the NG-FMS) and alerts to enhance flight safety and decrease single-pilot 
workload by ensuring autonomous separation assurance and collision avoidance. Surveillance 
information can be obtained from information services, as well as cooperative and non-cooperative 
sources. Information services are provided by the ATCo or ground crew and contain information 
regarding traffic, meteorological or other potential hazards to flight. To allow the same surveillance 
systems to be deployed in conventional, single-pilot and unmanned aircraft, a unified approach to non-
cooperative and cooperative separation assurance and collision avoidance is proposed in Figure 22, 
adopting a combination of navigation and tracking sensors/systems (such as Global Navigation Satellite 
Systems (GNSS), Inertial Measurement Unit (IMU) and Vision Based Navigation (VBN) sensors) in the 
navigation and guidance system architecture. Errors in the obstacle/intruder measurements are 
estimated considering a combination of non-cooperative sensors, including active/passive Forward-
Looking Sensors (FLS) and acoustic sensors, as well as cooperative systems, including Automatic 
Dependent Surveillance Broadcast (ADS-B) and Traffic Collision Avoidance System (TCAS). In this 
unified approach, analytical models are implemented for real-time processing of navigation and 
tracking errors affecting the state measurements allowing a direct translation into a unified range and 
bearing uncertainty descriptors[291], [292]. An Airborne Surveillance and Separation Assurance 
Processing (ASSAP) subsystem processes the incoming surveillance information according to the 
relevant surveillance applications for the single pilot (i.e., violation of separation, resolution advisory, 
etc.). The ASSAP is integrated into the NG-FMS to provide autonomous separation assurance, tactical 
re-routing, conflict resolution and/or automatic landing in case of single-pilot overload, incapacitation, 
and/or loss of C2 link. RTCA DO-289 provides the Minimum Aviation System Performance Standards 
(MASPS) for surveillance applications, with detailed specifications for the information (data 
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content/quality, update interval, latency, coverage, continuity), as well as the transmitting, receiving, 
ASSAP subsystems and display interfaces.” [16]. 

 

 

Figure 22. Surveillance Subsystem Architecture [16]. 

 

8.3. Flight Management 

“To support 4-Dimensional (4D) Trajectory/Intent Based Operations (TBO/IBO) in the future airspace, 
a Next Generation Flight Management System (NG-FMS) [289] is employed to provide autonomous 
flight planning, trajectory prediction, performance computations, guidance and control functionalities 
for manned, single-pilot and unmanned platforms. The NG-FMS (Figure 23) introduces a trajectory 
planning/optimisation subsystem, which performs multi-objective trajectory optimisation through 
mathematical algorithms, for strategic, tactical and emergency operations. Information about the 
flight plan is provided by a navigation subsystem and can be used to correct any deviation of the lateral, 
vertical and time profile from the intended path. Additionally, optimal trajectory intents are generated 
based on pre-defined cost functions to minimize fuel consumption, flight time, operative costs, or 
emissions, under constraints imposed by weather, airspace and traffic (Separation Assurance and 
Collision Avoidance (SA&CA)) requirements. The process of negotiation involves communicating these 
intents to the ground crew and ATCo, which are validated before being executed by the NG-FMS. 
Finally, a CNS integrity manager [23] is used to ensure the required performance levels (RCP, RNP, RSP) 
are maintained.” [16]. 
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Figure 23. NG-FMS Architecture [16]. 

8.4. Cognitive HMI 

“The cognitive HMI (CHMI) is a crucial component of the VPA system, providing the necessary 
reductions in workload as well as incapacitation-detecting capabilities that will support the case for 
SPO certification. Section 5.4.2 of the DOD’s Unmanned Systems Integrated Roadmap has identified 
adaptive interfaces as a key future development for autonomous systems [293]. The CHMI assists the 
pilot with several intelligent functions such as information management, adaptive alerting, situation 
assessment as well as task allocation. The proposed design of the CHMI in the VPA system is based on 
the guidelines specified in FAR AC 25.1302-1 with regards to the human factors engineering and system 
redundancy for safe and effective operations.” [16]. In addition, EASA AMC 25.1302  provides guidance 
for the “design and approval of installed equipment” as well as “recommendations for the design and 
evaluation of controls, displays, system behaviour, and system integration”, and “design guidance for 
error management.” 
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9. Conclusion 

This deliverable set the starting point of the project. 

 

It defined the context in which the HARVIS roadmap will be developed, specifying the steps needed, in 
terms of technology development, interaction design and training, to develop such an assistant. 

It will also be used to build specific use cases, to make specific examples of an AI based virtual assistant 
able to enable and support Single Pilot Operations. 

 

The next step is now to better define the tasks that the pilots will have to perform in the future context 
identified in this document, and understand which ones need to be (and can be) supported by a digital 
assistant. This will be done in D2.1 Analysis of Potential Cognitive Computing Aided Tasks.  
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Appendix A Levels of Automation 
 

Levels of Automation Taxonomy (LOAT). 
 

 

A 

INFORMATION 
ACQUISITION 

B 

INFORMATION ANALYSIS 

C 

DECISION AND ACTION 
SELECTION 

D 

ACTION IMPLEMENTATION 

Human Information 
Acquisition 

Human Information 
Analysis 

Human Decision Making Human Action Execution 

The human 
acquires 
relevant 
information 
on the 
process 
s/he is 
following. 

A0 Manual 

Without 
using any 
tool 

The human 
compares, 
and 
analyses 
different 
information 
items 
regarding 
the status 
of the 
process 
s/he is 
following  

B0 Manual 
Without using 
any tool or 
support 
external to 
her/his 
working 
memory. 

The human 
generates 
decision 
options, 
selects the 
appropriate 
ones and 
decides all 
actions to be 
performed. 

C0 Manual 
Without using 
any tool. 

The human 
executes and 
controls all 
actions. 

D0 Manual 
Without 
using any 
tool. 

A1 
Artefact-
Supported 
With the 
support of 
low-tech 
non-digital 
artefacts 

B1 Artefact 
Supported 
With the 
support of 
low-tech non-
digital 
artefacts. 

C1 Artefact 
Supported 
With the 
support of 
low-tech non-
digital 
artefacts. 

D1 Artefact 
Supported 
With the 
support of 
mechanical 
non-software 
based tools. 

Automation Support to 
Information Acquisition 

Automation Support to 
Information Analysis 

Automation Support to 
Decision Making 

Automation Support to 
Action Implementation 

The system 
supports 
the user in 
acquiring 
information 
on the 
process 
s/he is 
following.  

 

 

A2 Low 
Level 
Filtering 
and/or 
highlighting 
of the most 
relevant 
information 
are up to 
the user. 

The system 
supports 
the user in 
comparing 
and 
analysing 
different 
information 
items 
regarding 
the status 
of the 
process 
being 
followed. 

 

B2 Low Level 
The support is 
offered only 
on user 
request. 

The system 
proposes one 
or more 
decision 
alternatives to 
the user. 

C2 Open  

The user can 
select one of 
the 
alternatives 
proposed by 
the system or 
her/his own 
one. 

The system 
assists the 
user in 
performing 
actions. 

D2 Low Level 

By executing 
part of an 
action and/or 
by providing 
guidance and 
feedback 
during its 
execution. 
Each action is 
executed 
based on 
user initiative 
and the user 
keeps full 
control on 
the 
execution. 

 IN
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A3 Medium 
Level  
The system 
integrates 
data 
coming 
from 
different 
sources and 
filters 
and/or 
highlight 
the most 
relevant 
information 
items, 
based on 
user’s 
settings 

B3 Medium 
Level  
The support is 
offered only 
on user 
request.  The 
system 
triggers visual 
and/or aural 
alerts if the 
analysis 
produces 
results 
requiring 
attention by 
the user. 

C3 Rigid 

The user can 
only select 
one of the 
alternatives 
or ask the 
system to 
generate new 
options. 

D3 Medium 
Level 

By executing 
a sequence 
of actions 
after 
activation by 
the user. The 
user 
maintains full 
control of the 
sequence 
and can 
modify or 
interrupt it at 
any time 

The system 
supports 
the user in 
acquiring 
information 
on the 
process 
s/he is 
following.  

 

A4 High 
Level 
It 
integrates 
data 
coming 
from 
different 
sources and 
filters 
and/or 
highlights 
the 
information 
items 
relevant for 
the user. 
The criteria 
for 
integrating, 
filtering 
and 
highlighting 
the info are 
predefined 
at design 
level and 
visible to 
the user 

The system 
supports 
the user in 
comparing 
and 
analysing 
different 
information 
items 
regarding 
the status 
of the 
process 
being 
followed. 

 

B4 High Level 
The support is 
offered 
automatically, 
based on 
parameters 
adjustable by 
the user. The 
system 
triggers visual 
and/or aural 
alerts if the 
analysis 
produces 
results 
requiring 
attention by 
the user. 

 

  

The system 
assists the 
user in 
performing 
actions. 

D4 High Level 

By executing 
a sequence 
of actions 
after 
activation by 
the user. The 
user can 
monitor all 
the sequence 
and can 
interrupt it 
during its 
execution. 

 

A5 Full 
It 
integrates 
data 
coming 
from 
different 
sources and 
filters 

B5 Full 
The support is 
offered 
automatically, 
based on 
parameters 
predefined at 
design level. 
The system 

 



D1.1:  STATE OF THE ART REVIEW  
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and/or 
highlights 
the 
information 
items 
relevant for 
the user. 
The criteria 
for 
integrating, 
filtering 
and 
highlighting 
the info are 
predefined 
at design 
level but 
not visible 
to the user 

triggers visual 
and/or aural 
alerts if the 
analysis 
produces 
results 
requiring 
attention by 
the user. 

 

  

Automatic Decision Making 
Automatic Action 
Implementation 

The system 
decides 
autonomously 
the actions to 
be performed.  

 

 

C4 Low Level 
The human is 
informed of 
its decision 

The system 
initiates and 
executes 
automatically 
a sequence 
of actions.  

 

 

D5 Low Level 
The human 
can monitor 
all the 
sequence 
and can 
modify or 
interrupt it 
during its 
execution 

C5 Medium 
Level 
The human is 
informed of 
its decision 
only on 
request 
 

Always 
connected to 
Action 
Implementation 
D5-D8 

D6 Medium 
Level 
The human 
can monitor 
all the 
sequence 
and can 
interrupt it 
during its 
execution 

C6 High Level 
The human is 
not informed 
of its decision 
 

Always 
connected to 
Action 
Implementation 
D5-D8 

D7 High Level 
The human 
can monitor 
part of the 
sequence 
and has 
limited 
opportunities 
to interrupt 
it. 

 

D8 Full 
The human 
cannot 
monitor nor 
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Figure 24: Extended version of the LOAT 

 

More information available here: https://dblue.it/projects/project-levels-automation-taxonomy/ 

interrupt it 
until the 
sequence is 
not 
terminated. 

https://dblue.it/projects/project-levels-automation-taxonomy/

