

Presentation of HARVIS Project

Presenter: Antonio Leopoldo Rodríguez Vázquez Company: Skylife Engineering Date: 12Th February 2019 Place: Clean Sky JU, White Atrium, Avenue de la Toison d'Or 56-60, 1060 Brussels

Table of Contents

Harvis { _ }

1. Project Overview

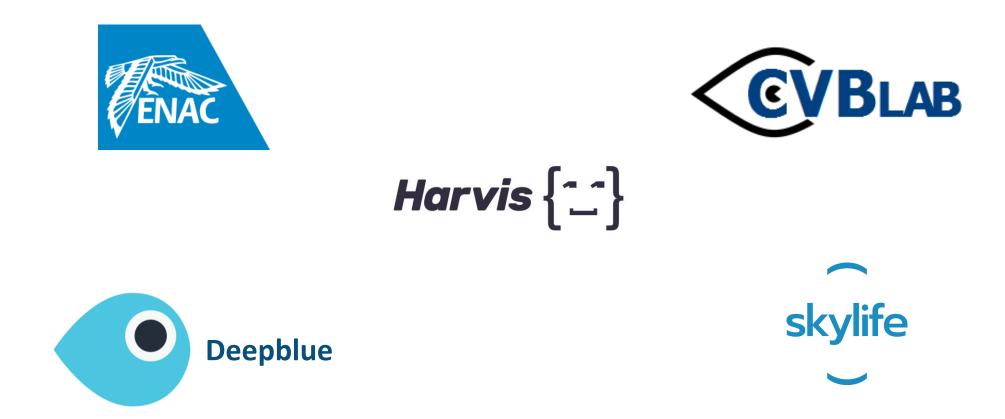
- Partners
- Context
- Relation to the CS2JU Work Plan

2. Concept and Approach

- Main objectives
- Ambition

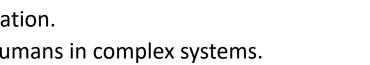
3. Impact

• Dissemination


4. Implementation

- Working Packages
- Gantt Agreed
- Tasks Analysis
- Deliverables and Milestones

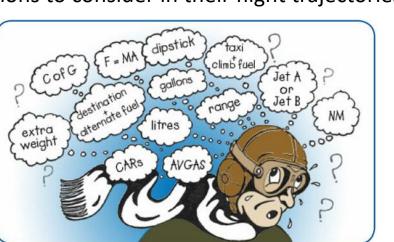
• Partners:

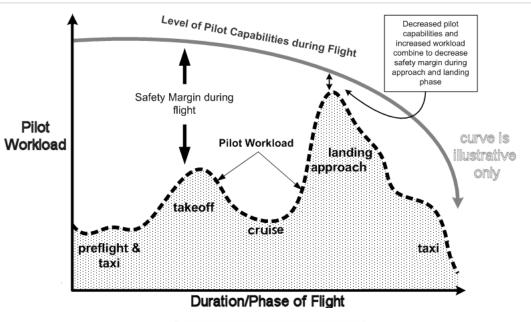


Harvis {] }

Project Overview

- Context:
 - The growth of air traffic.
 - For 2019, the growth of IFR movements is expected to be 2.6% to reach 11.2 million. (Expected + 2% per year)
 - Mobility Changes:
 - Integration of unmanned aircrafts into the European air space.
 - Tasks' automation.
 - Role of the humans in complex systems.





- Context:
 - Peak workload conditions:
 - Unpredictable situations.
 - Difficult meteorological conditions
 - Multiple system failures or cockpit crew incapacitation, etc.
 - Pilot to have more and more information related to the flight conditions in lockstep with tighter restrictions to consider in their flight trajectories.

• The overall objective of HARVIS

Identify how cognitive computing algorithms implemented in a digital assistant could support the decision making of a single pilot in complex situation.

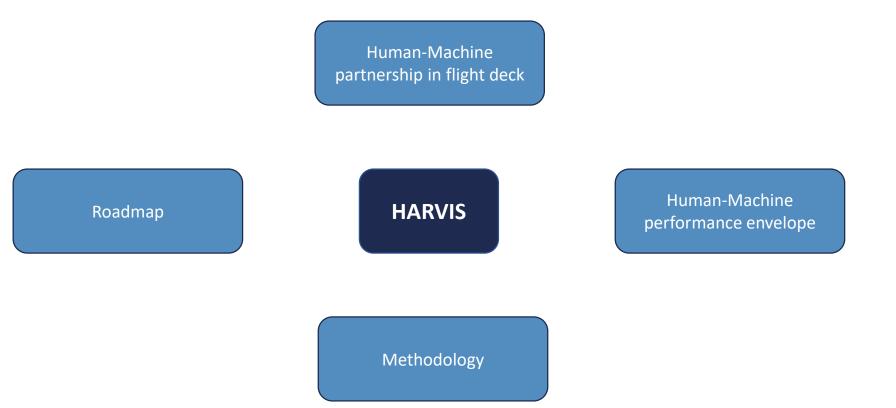
Human Aircraft Roadmap for Virtual Intelligent System

- Relation to the CS2JU Work Plan:
 - Topic: JTI-CS2-2018-CFP08-THT-02 Cognitive Computing potential for cockpit operations.

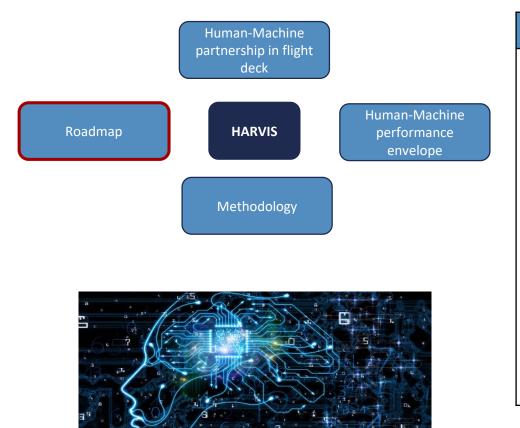
Low TRL research activities focused on identifying a roadmap for a digital assistant that will enable single pilot operations of Large Passenger Aircrafts

• HARVIS project will address these objectives:

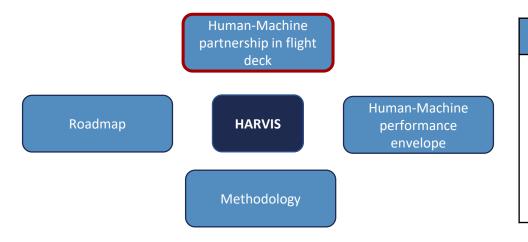
- Improving EU competitiveness:
 - > 3 EU member are involved


Objectives -

- Involve Universities by proposing PhD programs.
- Improving mobility:
 - HARVIS will support the ambition of the LPA Platform 3 IADP, and it is a key enabler to deal with the increasing complexity of the aircraft and its systems, the ATM and the increasing heterogeneity of crew population and of their operational involvement.
 - HARVIS project will provide a path to single pilot operations (a necessary step before autonomous operations) to be reached within the next 15 or 20 years
 - HARVIS will provide a roadmap identifying how Cognitive computing and AI can be integrated in aerospace sector and the key points for which the European community should bet within the next. As well as the current technological limitations and the options that must be avoided.

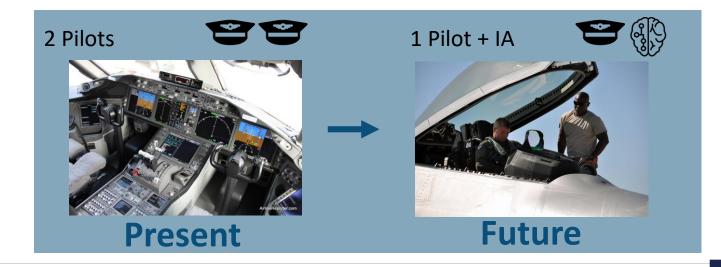


• Main objetives:

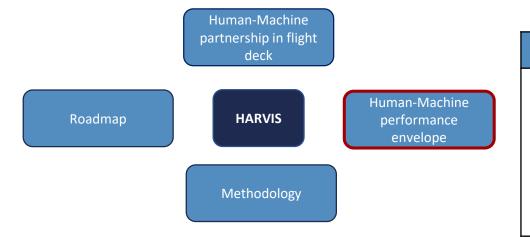


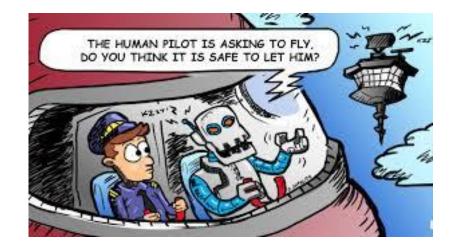
Roadmap

- Analyse the **impact of the use of cognitive computation in cockpit** operations, studying the its benefits and losses.
- Define which are the scenarios where a **"digital assistant"** will produce the greatest benefits.
- To **identify the technologies and the shortcomings** (legal, technological, etc.) that prevent these technologies to be applied successfully in real life.
- Define the technologies that should be supported as well as those to be avoided.
- Evaluate the integration of this assistance technology into the **realistic working process**.
- Identify collateral risks how to avoid them.
- Analyse how the impact of **cognitive computing will transform the actual working conditions**. As well as, propose effective solutions and how pilots should be trained in this context so that the solution is solid and effective (machine learning approach).
- Analyse how equipment that uses this technology can be certified or even licensed.

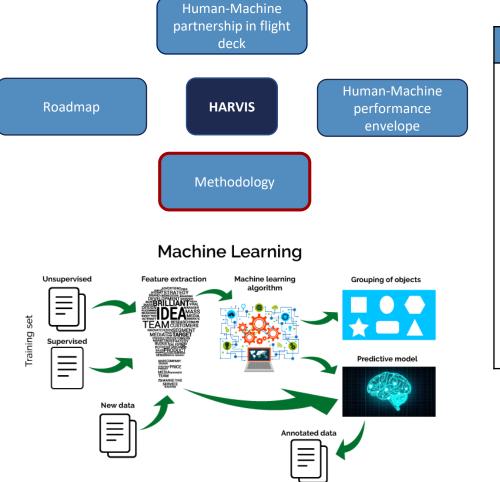


Human-Machine partnership in flight deck


- Exploring the opportunity for cognitive computing and AI technologies to assist pilot(s) during flight operations, in both nominal and abnormal conditions.
- Define a way to leverage abilities of both (Human and machines).
- Provide a reference frame for Human Machine interactions
- How pilot will learn to team up with AI technologies to help manage their tasks improving performance

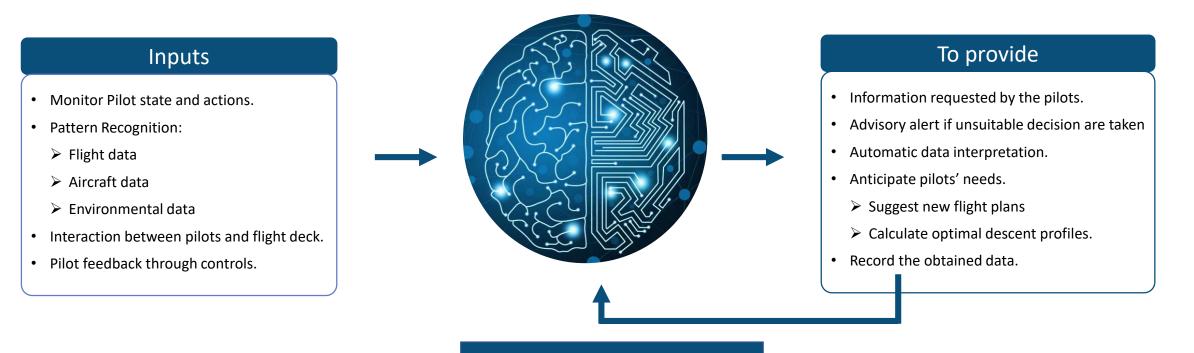


Human-Machine performance envelope


- Explore how the human machine partnership framework impacts the performance envelope.
- Aligning cognitive computing and artificial intelligence in the future flight deck.
- How cognitive computing could bring more efficient support to the pilot in the light of existing limitations
- Define envelope considerations such as pilot training, AI training, AI certification, etc

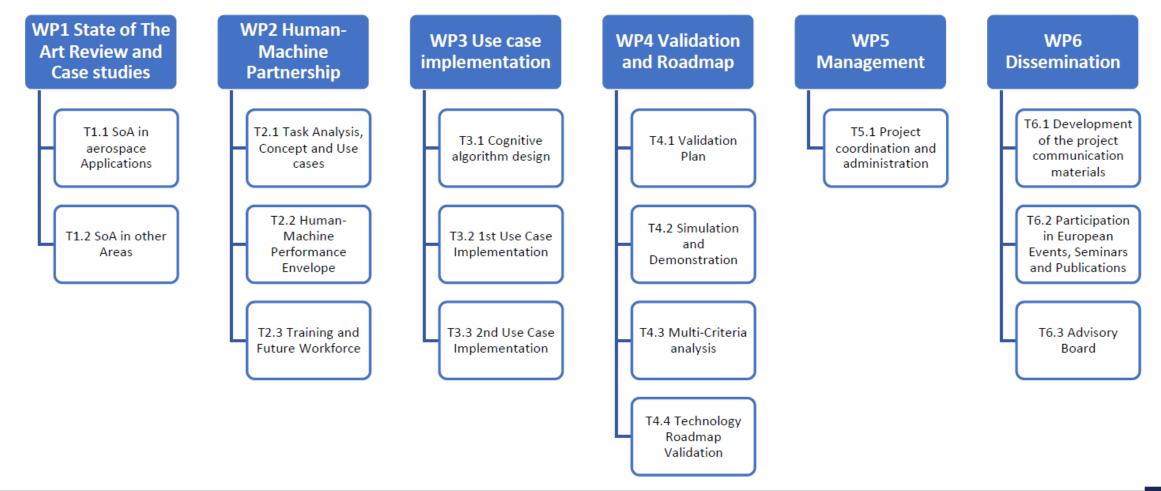
Methodology:

- State of the Art review.
- Al training:
 - Design a "feature extraction" algorithm.
 - Database generation (Real or simulated).
 - Propose a Human-Machine communication
- Use case definition:
 - ➢ Realistic and feasible.
 - Advisory board
- Simulation and validation.



- Main objetives:
 - 1. Detailed State of Art about cognitive computing algorithms.
 - 2. Analyze the scenarios where a "digital assistant" will produce the greatest benefits to the pilot.
 - 3. To **identify the technologies and the shortcomings** that prevent these technologies to be applied successfully in real life
 - Study the benefits of a potential decision making with enhanced information which might not be available on board.
 - 5. Benefits of the insertion of these technologies into the realistic working practices.
 - 6. To identify collateral risks.

• Ambition:


The experience of hundreds pilots

Harvis { _ }

• Working Packages

• Gantt agreement

		Y1			Y2			Y3						
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Ουτρυτ
WP 1	State of The Art Review and Case studies													
T1.1	SoA in aerospace Applications													D1.1 State Of The Art
T1.2	SoA in other Areas													DI.I State OF THE AIT
WP2	Human- Machine Partnership													
T2.1	Task Analysis, Concept and Use cases													D2.1 Task Analysis
T2.2	Human-Machine Performance Envelope													D2.2 Human Machine Envelope
T2.3	Training and Future Workforce													D2.3 Training
WP3	Use case implementation													
T3.1	Cognitive algorithm design													D3.1 1st Demonstrator
T3.2	1st Use Case Implementation													D3.2 2nd Demonstrator
T3.3	2nd Use Case Implementation													
WP4	Validation and Roadmap													
T4.1	Validation Plan													D4.1 Validation Plan
T4.2	Simulation and Demonstration													
T4.3	Multi-Criteria analysis													D4.2 Analysis report
T4.4	Technology Roadmap Validation													D4.3 Technologies Roadmap
WP5	Management													
T5.1	Project coordination and													D5.1 Periodic Rport
13.1	administration													D5.2 Final Report
WP6	Dissemination													
T6.1	Communication, Dissemintaion and Exploitation													
T6.2	Participation in European Events, Seminars and Publications													D6.1 Dissemination report
T6.3	Advisory Board													
				ML1		ML2				ML3				ML4

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 831884. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union

Harvis { _ }

Harvis { _ }

• Tasks Analysis

	WP:	1. "State of the Art in aerospace Applications"									
WP1 State of The	Leader:	UPV									
Art Review and Case studies	Objectives:	Define the state of the art in cognitive computing, and to define what are the more relevant case studies.									
	Tasks:	Task 1.1 "State	e of the Art in aerospace App	lications"	Start:	T0+10	End:	T0+10			
T1.1 SoA in aerospace	Tasks.	Task 1.2 "State	Start.	T0+10		T0+10					
Applications	Risks:	 Proposed Use Cases seems not relevant according to the State of the Art Study Literature is not available due to copyright or IP protections. 									
		Estimated risk: Low/Medium									
T1.2 SoA in other Areas	Start:	то	End:	T0+6							
	Deliverables:	D1.1: "State of the	e Art of CC algorithms"	Lead Part.	UP	V Du	e Date:	T0+6			

• Tasks Analysis

WP: 2. "Human-Machine Partnership"													
WP2 Human- Machine Partnership			Leader:	DBL									
			Objectives:	Define a new human machine partnership framework, and the consequent performance envelope.									
			Tasks:	Task 2.1 "Task	es":	Start:	т0		T0+12				
	ask Analysis, ept and Use			Task 2.2 "Hum	elope"		: Т0 Т0+30	End:	T0+24				
	cases			Task 2.3 "Train					T0+36				
	2 Human-	Risks:	Risks	Use Cases rejected by stakeholders or advisory board									
М	1achine			Estimated risk:	Medium								
	Performance Envelope		Start:	ТО Е			Т0+	36					
				D2.1 Analysis of potential CC aided tasks				NC		T0+12			
T2.3 T	Training and		Deliverables:	D2.2 Human machine interface and envelope Lead Pa				Du	ue Date:	T0+24			
Future	Future Workforce			D2.3 Pilot training considerations for CC						T0+36			

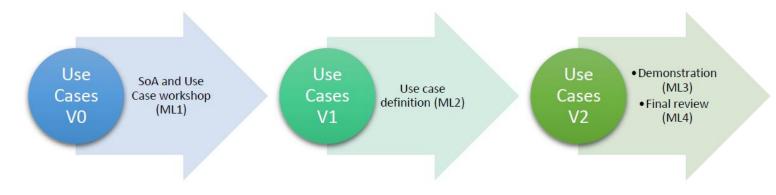
• Tasks Analysis

•	WP:	3. "Use case implementation"										
WP3 Use case	Leader:	SKLE										
implementation	Objectives:	The development of a proof of concept of cognitive computing assistant										
		Task 3.1 "Cogr	nitive Algorithm Des	ign"		T0+6		T0+18				
	Tasks:	Task 3.2 "First	Start:	T0+10	End:	T0+24						
T3.1 Cognitive algorithm design		Task 3.3 "Seco		T0+10		T0+24						
T3.2 1st Use Case Implementation	Risks:	 Data gathered is not enough to have significant information and develop a model with the required accuracy. The Use Cases will face some lack of technological solution that prevents the demonstration objective. 										
		Estimated risk: Medium										
	Start:	T0+6		End: T0+24								
T3.3 2nd Use Case	Deliverables:	D3.1 1st Demonst	rator:	Lead Part.:	SKYLIFE	Due Date:	тс)+24				
Implementation		D3.2 2nd Demons	trator:		ENAC	Due Date:	ТС)+24				

Tasks Analysis WP: 4. Validation and Roadmap											
WP4 Validation	Leader:	ENAC									
and Roadmap	Objectives:	Run the simulation activities in order to validate the digital assistant behaviour. Investigate the impact of the digital assistant on pilot. Provide a multi-criteria analysis and a technology roadmap validation.									
T4.1 Validation		Task 4.1 "Validation Plan"					T0+19	End:	T0+24		
Plan	Tacka	Task 4.2 "Simulation and Demonstration"					T0+25		T0+36		
	Tasks:	Task 4.3 "Mult		Start:	T0+31	LIIU.	T0+36				
T4.2 Simulation		Task 4.4 "Tech			T0+31		T0+36				
and Demonstration	Risks:	 Simulators are unavailable (work, busy,) Difficulties in finding subjects for the experiment 									
		Estimated risk: Medium/High									
T4.3 Multi-Criteria	Start:	T0+19		End:	T0+36	T0+36					
analysis		D4.1 Validation Pl	an		DBL			тс	+24		
	Deliverables:	D4.2 Analysis Report.		Lead Part.:	DBL		Due Date:	тс	+36		
T4.4 Technology		D4.3 Technologies Roadmap			SKL			тс	T0+36		
Roadmap											

Validation

• Deriverables


Number	Deliverable name	WPn	Leader	Туре	Diss. level	Delivery date
D1.1	State of the art Of CC algorithms	WP1	UPV	R	Public	T0+6
D2.1	Analysis of Potential CC aided Tasks	WP2	ENAC	R	Public	T0+12
D2.2	Human Machine Interface and Envelope	WP2	DBL	R	Public	T0+24
D2.3	Pilot training consideration for the implementation of a digital assistant.	WP2	DBL	R	Public	T0+36
D3.1	1st Demonstrator	WP3	SKLE	DEM	Public	T0+24
D3.2	2nd Demonstrator	WP3	ENAC	DEM	Public	T0+24
D4.1	Validation Plan	WP4	DBL	R	Public	T0+24
D4.2	Analysis Report	WP4	DBL	R	Public	T0+36
D4.3	Technologies Roadmap	WP4	SKLE	R	Public	T0+36
D5.1	Consortium agreement	WP5	SKLE	R	Confidential	T0+1
D5.2	Final Report	WP5	SKLE	R	Confidential	T0+36
D6.1	PEDR	WP6	DBL	R	Confidential	T0+6
D6.2	DMP	WP6	DBL	R	Confidential	T0+6
D7.1	Ethics	N/A	SKLE	ETHICS	Confidential	T0+1

• Milestones

Number	Name	Leader WP		Due date	Description
ML 1	SoA and Use cases workshop	SKLE	WP1	T0+6	Present SoA and the proposed use cases.
ML 2	Use cases definition	DBL	WP2	T0+12	Detailed presentation of the use cases to be demonstrated
ML 3	Progress Assessment	SKLE	WP1 & WP2	T0+12	Asset the progress and confirm continuation of work (CSJU PO)
ML 4	Demonstration implementation	ENAC	WP3	T0+24	Public demonstration of use cases.
ML 5	Final Review	SKLE	WP4	T0+36	Final review of the results of the projecct

Roles

- Industry (interest expressed by THALES AVIONICS, SAAB, HONEYWELL, ZODIAC, DASSAULT AVIATION)
- Users (Pilots and associations)
- Liability experts (e.g. ALIAS network)
- Automation experts
- Regulators (e.g. EASA)

Steps

Expected support

- STATE OF THE ART + ROADMAP
- USE CASES: Are the use cases relevant and realistic for the involved stakeholders?
 - They are aligned with expectations on future aviation scenarios
 - They are feasible in the 2035+ timeframe
 - They add value for the different stakeholders
- HUMAN-MACHINE PARTNERSHIP
 FRAMEWORK & ENVELOPE
- RESULTS: Participate to the final demonstration and provide feedback

Thank you very much for your attention

